Spring videre til hovedindholdet
Evaluer
Tick mark Image
Differentier w.r.t. x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

8^{\frac{1}{3}}\left(x^{6}\right)^{\frac{1}{3}}
Udvid \left(8x^{6}\right)^{\frac{1}{3}}.
8^{\frac{1}{3}}x^{2}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 6 og \frac{1}{3} for at få 2.
2x^{2}
Beregn 8 til potensen af \frac{1}{3}, og få 2.
\frac{1}{3}\times \left(8x^{6}\right)^{\frac{1}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(8x^{6})
Hvis F er sammensat af to differentiable funktioner f\left(u\right) og u=g\left(x\right), dvs. hvis F\left(x\right)=f\left(g\left(x\right)\right), er afledningen af F lig med afledningen af f med hensyn til u gange afledningen af g med hensyn til x, dvs. \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{3}\times \left(8x^{6}\right)^{-\frac{2}{3}}\times 6\times 8x^{6-1}
Afledningen af en polynomisk værdi er summen af afledningerne af dens udtryk. Afledningen af et hvilket som helst konstant udtryk er 0. Afledningen af ax^{n} er nax^{n-1}.
16x^{5}\times \left(8x^{6}\right)^{-\frac{2}{3}}
Forenkling.