Spring videre til hovedindholdet
Løs for x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

2x^{2}+3x-5-\left(x-1\right)\left(x+5\right)=0
Brug fordelingsegenskaben til at multiplicere 2x+5 med x-1, og kombiner ens led.
2x^{2}+3x-5-\left(x^{2}+4x-5\right)=0
Brug fordelingsegenskaben til at multiplicere x-1 med x+5, og kombiner ens led.
2x^{2}+3x-5-x^{2}-4x+5=0
For at finde det modsatte af x^{2}+4x-5 skal du finde det modsatte af hvert led.
x^{2}+3x-5-4x+5=0
Kombiner 2x^{2} og -x^{2} for at få x^{2}.
x^{2}-x-5+5=0
Kombiner 3x og -4x for at få -x.
x^{2}-x=0
Tilføj -5 og 5 for at få 0.
x\left(x-1\right)=0
Udfaktoriser x.
x=0 x=1
Løs x=0 og x-1=0 for at finde Lignings løsninger.
2x^{2}+3x-5-\left(x-1\right)\left(x+5\right)=0
Brug fordelingsegenskaben til at multiplicere 2x+5 med x-1, og kombiner ens led.
2x^{2}+3x-5-\left(x^{2}+4x-5\right)=0
Brug fordelingsegenskaben til at multiplicere x-1 med x+5, og kombiner ens led.
2x^{2}+3x-5-x^{2}-4x+5=0
For at finde det modsatte af x^{2}+4x-5 skal du finde det modsatte af hvert led.
x^{2}+3x-5-4x+5=0
Kombiner 2x^{2} og -x^{2} for at få x^{2}.
x^{2}-x-5+5=0
Kombiner 3x og -4x for at få -x.
x^{2}-x=0
Tilføj -5 og 5 for at få 0.
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, -1 med b og 0 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2}
Tag kvadratroden af 1.
x=\frac{1±1}{2}
Det modsatte af -1 er 1.
x=\frac{2}{2}
Nu skal du løse ligningen, x=\frac{1±1}{2} når ± er plus. Adder 1 til 1.
x=1
Divider 2 med 2.
x=\frac{0}{2}
Nu skal du løse ligningen, x=\frac{1±1}{2} når ± er minus. Subtraher 1 fra 1.
x=0
Divider 0 med 2.
x=1 x=0
Ligningen er nu løst.
2x^{2}+3x-5-\left(x-1\right)\left(x+5\right)=0
Brug fordelingsegenskaben til at multiplicere 2x+5 med x-1, og kombiner ens led.
2x^{2}+3x-5-\left(x^{2}+4x-5\right)=0
Brug fordelingsegenskaben til at multiplicere x-1 med x+5, og kombiner ens led.
2x^{2}+3x-5-x^{2}-4x+5=0
For at finde det modsatte af x^{2}+4x-5 skal du finde det modsatte af hvert led.
x^{2}+3x-5-4x+5=0
Kombiner 2x^{2} og -x^{2} for at få x^{2}.
x^{2}-x-5+5=0
Kombiner 3x og -4x for at få -x.
x^{2}-x=0
Tilføj -5 og 5 for at få 0.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Divider -1, som er koefficienten for leddet x, med 2 for at få -\frac{1}{2}. Adder derefter kvadratet af -\frac{1}{2} på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Du kan kvadrere -\frac{1}{2} ved at kvadrere både tælleren og nævneren i brøken.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
Faktor x^{2}-x+\frac{1}{4}. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tag kvadratroden af begge sider i ligningen.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Forenkling.
x=1 x=0
Adder \frac{1}{2} på begge sider af ligningen.