Spring videre til hovedindholdet
Evaluer
Tick mark Image
Udvid
Tick mark Image

Lignende problemer fra websøgning

Aktie

4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Brug binomialsætningen \left(p+q\right)^{2}=p^{2}+2pq+q^{2} til at udvide \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Udvid \left(-2a^{2}\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Beregn -2 til potensen af 2, og få 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Multiplicer 2 og 4 for at få 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Kombiner 4a^{4} og -8a^{4} for at få -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Udvid \left(\frac{1}{2}b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Beregn \frac{1}{2} til potensen af 2, og få \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 1 og 2 for at få 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Brug binomialsætningen \left(p-q\right)^{2}=p^{2}-2pq+q^{2} til at udvide \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Multiplicer -1 og \frac{1}{4} for at få -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Kombiner -4a^{4} og 4a^{4} for at få 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Kombiner 4a^{2}b og -4a^{2}b for at få 0.
2b^{2}-\frac{1}{4}b^{3}
Kombiner b^{2} og b^{2} for at få 2b^{2}.
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Brug binomialsætningen \left(p+q\right)^{2}=p^{2}+2pq+q^{2} til at udvide \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Udvid \left(-2a^{2}\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Beregn -2 til potensen af 2, og få 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Multiplicer 2 og 4 for at få 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Kombiner 4a^{4} og -8a^{4} for at få -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Udvid \left(\frac{1}{2}b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Beregn \frac{1}{2} til potensen af 2, og få \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 1 og 2 for at få 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Brug binomialsætningen \left(p-q\right)^{2}=p^{2}-2pq+q^{2} til at udvide \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Multiplicer -1 og \frac{1}{4} for at få -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Kombiner -4a^{4} og 4a^{4} for at få 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Kombiner 4a^{2}b og -4a^{2}b for at få 0.
2b^{2}-\frac{1}{4}b^{3}
Kombiner b^{2} og b^{2} for at få 2b^{2}.