Løs for x
x=\left(-\frac{22}{13}+\frac{7}{13}i\right)y+\left(5-13i\right)
Løs for y
y=\left(-\frac{22}{41}-\frac{7}{41}i\right)x+\left(\frac{201}{41}-\frac{251}{41}i\right)
Aktie
Kopieret til udklipsholder
\left(2+3i\right)x=49-11i-\left(5+4i\right)y
Subtraher \left(5+4i\right)y fra begge sider.
\left(2+3i\right)x=49-11i+\left(-5-4i\right)y
Multiplicer -1 og 5+4i for at få -5-4i.
\left(2+3i\right)x=\left(-5-4i\right)y+\left(49-11i\right)
Ligningen er nu i standardform.
\frac{\left(2+3i\right)x}{2+3i}=\frac{\left(-5-4i\right)y+\left(49-11i\right)}{2+3i}
Divider begge sider med 2+3i.
x=\frac{\left(-5-4i\right)y+\left(49-11i\right)}{2+3i}
Division med 2+3i annullerer multiplikationen med 2+3i.
x=\left(-\frac{22}{13}+\frac{7}{13}i\right)y+\left(5-13i\right)
Divider 49-11i+\left(-5-4i\right)y med 2+3i.
\left(5+4i\right)y=49-11i-\left(2+3i\right)x
Subtraher \left(2+3i\right)x fra begge sider.
\left(5+4i\right)y=49-11i+\left(-2-3i\right)x
Multiplicer -1 og 2+3i for at få -2-3i.
\left(5+4i\right)y=\left(-2-3i\right)x+\left(49-11i\right)
Ligningen er nu i standardform.
\frac{\left(5+4i\right)y}{5+4i}=\frac{\left(-2-3i\right)x+\left(49-11i\right)}{5+4i}
Divider begge sider med 5+4i.
y=\frac{\left(-2-3i\right)x+\left(49-11i\right)}{5+4i}
Division med 5+4i annullerer multiplikationen med 5+4i.
y=\left(-\frac{22}{41}-\frac{7}{41}i\right)x+\left(\frac{201}{41}-\frac{251}{41}i\right)
Divider 49-11i+\left(-2-3i\right)x med 5+4i.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}