Evaluer
2a^{3}\left(32768a^{13}-54a^{4}+a-4\right)
Udvid
65536a^{16}-108a^{7}+2a^{4}-8a^{3}
Aktie
Kopieret til udklipsholder
\left(-2a\right)^{3}+\left(\left(-2a\right)^{8}\right)^{2}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 5 og 3 for at få 8.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 8 og 2 for at få 16.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 2 og 5 for at få 7.
\left(-2\right)^{3}a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Udvid \left(-2a\right)^{3}.
-8a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Beregn -2 til potensen af 3, og få -8.
-8a^{3}+\left(-2\right)^{16}a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Udvid \left(-2a\right)^{16}.
-8a^{3}+65536a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Beregn -2 til potensen af 16, og få 65536.
-8a^{3}+65536a^{16}-\frac{\left(-3\right)^{2}a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Udvid \left(-3a\right)^{2}.
-8a^{3}+65536a^{16}-\frac{9a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Beregn -3 til potensen af 2, og få 9.
-8a^{3}+65536a^{16}-\frac{18a^{2}a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Multiplicer 9 og 2 for at få 18.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 2 og 7 for at få 9.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 2^{4}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Udvid \left(2a\right)^{4}.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 16a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Beregn 2 til potensen af 4, og få 16.
-8a^{3}+65536a^{16}-\frac{288a^{9}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Multiplicer 18 og 16 for at få 288.
-8a^{3}+65536a^{16}-\frac{288a^{13}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 9 og 4 for at få 13.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Multiplicer 288 og -3 for at få -864.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}\left(a^{2}\right)^{3}}+2a^{4}
Udvid \left(-2a^{2}\right)^{3}.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}a^{6}}+2a^{4}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 3 for at få 6.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{-8a^{6}}+2a^{4}
Beregn -2 til potensen af 3, og få -8.
-8a^{3}+65536a^{16}-\frac{-108a^{7}}{-1}+2a^{4}
Udlign 8a^{6} i både tælleren og nævneren.
-8a^{3}+65536a^{16}-108a^{7}+2a^{4}
Alt, der divideres med -1, giver det modsatte.
\left(-2a\right)^{3}+\left(\left(-2a\right)^{8}\right)^{2}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 5 og 3 for at få 8.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 8 og 2 for at få 16.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 2 og 5 for at få 7.
\left(-2\right)^{3}a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Udvid \left(-2a\right)^{3}.
-8a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Beregn -2 til potensen af 3, og få -8.
-8a^{3}+\left(-2\right)^{16}a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Udvid \left(-2a\right)^{16}.
-8a^{3}+65536a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Beregn -2 til potensen af 16, og få 65536.
-8a^{3}+65536a^{16}-\frac{\left(-3\right)^{2}a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Udvid \left(-3a\right)^{2}.
-8a^{3}+65536a^{16}-\frac{9a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Beregn -3 til potensen af 2, og få 9.
-8a^{3}+65536a^{16}-\frac{18a^{2}a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Multiplicer 9 og 2 for at få 18.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 2 og 7 for at få 9.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 2^{4}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Udvid \left(2a\right)^{4}.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 16a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Beregn 2 til potensen af 4, og få 16.
-8a^{3}+65536a^{16}-\frac{288a^{9}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Multiplicer 18 og 16 for at få 288.
-8a^{3}+65536a^{16}-\frac{288a^{13}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 9 og 4 for at få 13.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Multiplicer 288 og -3 for at få -864.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}\left(a^{2}\right)^{3}}+2a^{4}
Udvid \left(-2a^{2}\right)^{3}.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}a^{6}}+2a^{4}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 3 for at få 6.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{-8a^{6}}+2a^{4}
Beregn -2 til potensen af 3, og få -8.
-8a^{3}+65536a^{16}-\frac{-108a^{7}}{-1}+2a^{4}
Udlign 8a^{6} i både tælleren og nævneren.
-8a^{3}+65536a^{16}-108a^{7}+2a^{4}
Alt, der divideres med -1, giver det modsatte.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}