Løs for x (complex solution)
x\in \sqrt[4]{2},-\sqrt[4]{2}i,\sqrt[4]{2}i,-\sqrt[4]{2},-1,1,i,-i
Løs for x
x=-\sqrt[4]{2}\approx -1,189207115
x=\sqrt[4]{2}\approx 1,189207115
x=1
x=-1
Graf
Aktie
Kopieret til udklipsholder
t^{2}-3t+2=0
Erstat t for x^{4}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 2}}{2}
Alle ligninger i formlen ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Erstat 1 med a, -3 med b, og 2 med c i den kvadratiske formel.
t=\frac{3±1}{2}
Lav beregningerne.
t=2 t=1
Løs ligningen t=\frac{3±1}{2} når ± er plus, og når ± er minus.
x=-\sqrt[4]{2}i x=-\sqrt[4]{2} x=\sqrt[4]{2}i x=\sqrt[4]{2} x=-1 x=-i x=i x=1
Siden x=t^{4} bliver løsningerne hentet ved at løse ligningen for hver enkelt t.
t^{2}-3t+2=0
Erstat t for x^{4}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 2}}{2}
Alle ligninger i formlen ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Erstat 1 med a, -3 med b, og 2 med c i den kvadratiske formel.
t=\frac{3±1}{2}
Lav beregningerne.
t=2 t=1
Løs ligningen t=\frac{3±1}{2} når ± er plus, og når ± er minus.
x=\sqrt[4]{2} x=-\sqrt[4]{2} x=1 x=-1
Siden x=t^{4} bliver løsningerne hentet ved at evaluere x=±\sqrt[4]{t} for positive t.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}