Løs for x (complex solution)
x\in \sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}},\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}},\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
Graf
Aktie
Kopieret til udklipsholder
x^{6}=6x^{3}-125
Beregn 5 til potensen af 3, og få 125.
x^{6}-6x^{3}=-125
Subtraher 6x^{3} fra begge sider.
x^{6}-6x^{3}+125=0
Tilføj 125 på begge sider.
t^{2}-6t+125=0
Erstat t for x^{3}.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 125}}{2}
Alle ligninger i formlen ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Erstat 1 med a, -6 med b, og 125 med c i den kvadratiske formel.
t=\frac{6±\sqrt{-464}}{2}
Lav beregningerne.
t=3+2\sqrt{29}i t=-2\sqrt{29}i+3
Løs ligningen t=\frac{6±\sqrt{-464}}{2} når ± er plus, og når ± er minus.
x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
Siden x=t^{3} bliver løsningerne hentet ved at løse ligningen for hver enkelt t.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}