Spring videre til hovedindholdet
Løs for x (complex solution)
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

x^{2}-x+1=0
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, -1 med b og 1 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2}
Adder 1 til -4.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2}
Tag kvadratroden af -3.
x=\frac{1±\sqrt{3}i}{2}
Det modsatte af -1 er 1.
x=\frac{1+\sqrt{3}i}{2}
Nu skal du løse ligningen, x=\frac{1±\sqrt{3}i}{2} når ± er plus. Adder 1 til i\sqrt{3}.
x=\frac{-\sqrt{3}i+1}{2}
Nu skal du løse ligningen, x=\frac{1±\sqrt{3}i}{2} når ± er minus. Subtraher i\sqrt{3} fra 1.
x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
Ligningen er nu løst.
x^{2}-x+1=0
Kvadratligninger som denne kan løses ved at fuldføre kvadratet. Ligningen skal først være i formlen x^{2}+bx=c for at fuldføre kvadratet.
x^{2}-x+1-1=-1
Subtraher 1 fra begge sider af ligningen.
x^{2}-x=-1
Hvis 1 subtraheres fra sig selv, giver det 0.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-1+\left(-\frac{1}{2}\right)^{2}
Divider -1, som er koefficienten for leddet x, med 2 for at få -\frac{1}{2}. Adder derefter kvadratet af -\frac{1}{2} på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
x^{2}-x+\frac{1}{4}=-1+\frac{1}{4}
Du kan kvadrere -\frac{1}{2} ved at kvadrere både tælleren og nævneren i brøken.
x^{2}-x+\frac{1}{4}=-\frac{3}{4}
Adder -1 til \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{3}{4}
Faktoriser x^{2}-x+\frac{1}{4}. Når x^{2}+bx+c er et perfekt kvadrat, kan det generelt altid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tag kvadratroden af begge sider i ligningen.
x-\frac{1}{2}=\frac{\sqrt{3}i}{2} x-\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Forenkling.
x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
Adder \frac{1}{2} på begge sider af ligningen.