Spring videre til hovedindholdet
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

a+b=-6 ab=1\left(-27\right)=-27
Faktoriser udtrykket ved gruppering. Først skal udtrykket omskrives som x^{2}+ax+bx-27. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,-27 3,-9
Da ab er negative, skal a og b have de modsatte tegn. Da a+b er negativt, har det negative tal en højere absolut værdi end det positive. Vis alle disse heltals par, der giver produkt -27.
1-27=-26 3-9=-6
Beregn summen af hvert par.
a=-9 b=3
Løsningen er det par, der får summen -6.
\left(x^{2}-9x\right)+\left(3x-27\right)
Omskriv x^{2}-6x-27 som \left(x^{2}-9x\right)+\left(3x-27\right).
x\left(x-9\right)+3\left(x-9\right)
Udx i den første og 3 i den anden gruppe.
\left(x-9\right)\left(x+3\right)
Udfaktoriser fællesleddet x-9 ved hjælp af fordelingsegenskaben.
x^{2}-6x-27=0
Kvadratisk polynomium kan faktoriseres ved hjælp af transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), hvor x_{1} og x_{2} er løsninger af den kvadratiske ligning ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
Kvadrér -6.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
Multiplicer -4 gange -27.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
Adder 36 til 108.
x=\frac{-\left(-6\right)±12}{2}
Tag kvadratroden af 144.
x=\frac{6±12}{2}
Det modsatte af -6 er 6.
x=\frac{18}{2}
Nu skal du løse ligningen, x=\frac{6±12}{2} når ± er plus. Adder 6 til 12.
x=9
Divider 18 med 2.
x=-\frac{6}{2}
Nu skal du løse ligningen, x=\frac{6±12}{2} når ± er minus. Subtraher 12 fra 6.
x=-3
Divider -6 med 2.
x^{2}-6x-27=\left(x-9\right)\left(x-\left(-3\right)\right)
Faktoriser det oprindelige udtryk ved hjælp af ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstat 9 med x_{1} og -3 med x_{2}.
x^{2}-6x-27=\left(x-9\right)\left(x+3\right)
Sørg for at forenkle alle udtryk af formen p-\left(-q\right) til p+q.