Spring videre til hovedindholdet
Løs for x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

x^{2}-4x-5+5=0
Tilføj 5 på begge sider.
x^{2}-4x=0
Tilføj -5 og 5 for at få 0.
x\left(x-4\right)=0
Udfaktoriser x.
x=0 x=4
Løs x=0 og x-4=0 for at finde Lignings løsninger.
x^{2}-4x-5=-5
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x^{2}-4x-5-\left(-5\right)=-5-\left(-5\right)
Adder 5 på begge sider af ligningen.
x^{2}-4x-5-\left(-5\right)=0
Hvis -5 subtraheres fra sig selv, giver det 0.
x^{2}-4x=0
Subtraher -5 fra -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, -4 med b og 0 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2}
Tag kvadratroden af \left(-4\right)^{2}.
x=\frac{4±4}{2}
Det modsatte af -4 er 4.
x=\frac{8}{2}
Nu skal du løse ligningen, x=\frac{4±4}{2} når ± er plus. Adder 4 til 4.
x=4
Divider 8 med 2.
x=\frac{0}{2}
Nu skal du løse ligningen, x=\frac{4±4}{2} når ± er minus. Subtraher 4 fra 4.
x=0
Divider 0 med 2.
x=4 x=0
Ligningen er nu løst.
x^{2}-4x-5+5=0
Tilføj 5 på begge sider.
x^{2}-4x=0
Tilføj -5 og 5 for at få 0.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
Divider -4, som er koefficienten for leddet x, med 2 for at få -2. Adder derefter kvadratet af -2 på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
x^{2}-4x+4=4
Kvadrér -2.
\left(x-2\right)^{2}=4
Faktor x^{2}-4x+4. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
Tag kvadratroden af begge sider i ligningen.
x-2=2 x-2=-2
Forenkling.
x=4 x=0
Adder 2 på begge sider af ligningen.