Løs for x
x=-4
Graf
Aktie
Kopieret til udklipsholder
x^{2}+8x+37-21=0
Subtraher 21 fra begge sider.
x^{2}+8x+16=0
Subtraher 21 fra 37 for at få 16.
a+b=8 ab=16
Faktor x^{2}+8x+16 ved hjælp af formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) for at løse ligningen. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,16 2,8 4,4
Da ab er positivt, skal a og b have samme fortegn. Da a+b er positivt, er a og b begge positive. Vis alle disse heltals par, der giver produkt 16.
1+16=17 2+8=10 4+4=8
Beregn summen af hvert par.
a=4 b=4
Løsningen er det par, der får summen 8.
\left(x+4\right)\left(x+4\right)
Omskriv det faktoriserede udtryk \left(x+a\right)\left(x+b\right) ved hjælp af de opnåede værdier.
\left(x+4\right)^{2}
Omskriv som et binomialt kvadrat.
x=-4
For at finde Ligningsløsningen skal du løse x+4=0.
x^{2}+8x+37-21=0
Subtraher 21 fra begge sider.
x^{2}+8x+16=0
Subtraher 21 fra 37 for at få 16.
a+b=8 ab=1\times 16=16
Hvis du vil løse ligningen, skal du faktor venstre side ved at gruppere. For det første skal venstre side ikke skrives som x^{2}+ax+bx+16. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,16 2,8 4,4
Da ab er positivt, skal a og b have samme fortegn. Da a+b er positivt, er a og b begge positive. Vis alle disse heltals par, der giver produkt 16.
1+16=17 2+8=10 4+4=8
Beregn summen af hvert par.
a=4 b=4
Løsningen er det par, der får summen 8.
\left(x^{2}+4x\right)+\left(4x+16\right)
Omskriv x^{2}+8x+16 som \left(x^{2}+4x\right)+\left(4x+16\right).
x\left(x+4\right)+4\left(x+4\right)
Udx i den første og 4 i den anden gruppe.
\left(x+4\right)\left(x+4\right)
Udfaktoriser fællesleddet x+4 ved hjælp af fordelingsegenskaben.
\left(x+4\right)^{2}
Omskriv som et binomialt kvadrat.
x=-4
For at finde Ligningsløsningen skal du løse x+4=0.
x^{2}+8x+37=21
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x^{2}+8x+37-21=21-21
Subtraher 21 fra begge sider af ligningen.
x^{2}+8x+37-21=0
Hvis 21 subtraheres fra sig selv, giver det 0.
x^{2}+8x+16=0
Subtraher 21 fra 37.
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, 8 med b og 16 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 16}}{2}
Kvadrér 8.
x=\frac{-8±\sqrt{64-64}}{2}
Multiplicer -4 gange 16.
x=\frac{-8±\sqrt{0}}{2}
Adder 64 til -64.
x=-\frac{8}{2}
Tag kvadratroden af 0.
x=-4
Divider -8 med 2.
x^{2}+8x+37=21
Kvadratligninger som denne kan løses ved at fuldføre kvadratet. Ligningen skal først være i formlen x^{2}+bx=c for at fuldføre kvadratet.
x^{2}+8x+37-37=21-37
Subtraher 37 fra begge sider af ligningen.
x^{2}+8x=21-37
Hvis 37 subtraheres fra sig selv, giver det 0.
x^{2}+8x=-16
Subtraher 37 fra 21.
x^{2}+8x+4^{2}=-16+4^{2}
Divider 8, som er koefficienten for leddet x, med 2 for at få 4. Adder derefter kvadratet af 4 på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
x^{2}+8x+16=-16+16
Kvadrér 4.
x^{2}+8x+16=0
Adder -16 til 16.
\left(x+4\right)^{2}=0
Faktor x^{2}+8x+16. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(x+4\right)^{2}}=\sqrt{0}
Tag kvadratroden af begge sider i ligningen.
x+4=0 x+4=0
Forenkling.
x=-4 x=-4
Subtraher 4 fra begge sider af ligningen.
x=-4
Ligningen er nu løst. Løsningerne er de samme.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}