Evaluer
12\sqrt{15}+57\approx 103,475800154
Udvid
12 \sqrt{15} + 57 = 103,475800154
Aktie
Kopieret til udklipsholder
4\left(\sqrt{3}\right)^{2}+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Brug binomialsætningen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til at udvide \left(2\sqrt{3}+3\sqrt{5}\right)^{2}.
4\times 3+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Kvadratet på \sqrt{3} er 3.
12+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Multiplicer 4 og 3 for at få 12.
12+12\sqrt{15}+9\left(\sqrt{5}\right)^{2}
Hvis du vil multiplicere \sqrt{3} og \sqrt{5}, skal du multiplicere tallene under kvadratroden.
12+12\sqrt{15}+9\times 5
Kvadratet på \sqrt{5} er 5.
12+12\sqrt{15}+45
Multiplicer 9 og 5 for at få 45.
57+12\sqrt{15}
Tilføj 12 og 45 for at få 57.
4\left(\sqrt{3}\right)^{2}+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Brug binomialsætningen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til at udvide \left(2\sqrt{3}+3\sqrt{5}\right)^{2}.
4\times 3+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Kvadratet på \sqrt{3} er 3.
12+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Multiplicer 4 og 3 for at få 12.
12+12\sqrt{15}+9\left(\sqrt{5}\right)^{2}
Hvis du vil multiplicere \sqrt{3} og \sqrt{5}, skal du multiplicere tallene under kvadratroden.
12+12\sqrt{15}+9\times 5
Kvadratet på \sqrt{5} er 5.
12+12\sqrt{15}+45
Multiplicer 9 og 5 for at få 45.
57+12\sqrt{15}
Tilføj 12 og 45 for at få 57.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}