Løs for x
x=-3
Graf
Aktie
Kopieret til udklipsholder
\left(\sqrt{6-x}\right)^{2}=\left(-x\right)^{2}
Kvadrér begge sider af ligningen.
6-x=\left(-x\right)^{2}
Beregn \sqrt{6-x} til potensen af 2, og få 6-x.
6-x=x^{2}
Beregn -x til potensen af 2, og få x^{2}.
6-x-x^{2}=0
Subtraher x^{2} fra begge sider.
-x^{2}-x+6=0
Omarranger polynomiet for at placere det i standardformlen. Placer leddene i rækkefølge fra højeste til laveste potens.
a+b=-1 ab=-6=-6
Hvis du vil løse ligningen, skal du faktor venstre side ved at gruppere. For det første skal venstre side ikke skrives som -x^{2}+ax+bx+6. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,-6 2,-3
Da ab er negative, skal a og b have de modsatte tegn. Da a+b er negativt, har det negative tal en højere absolut værdi end det positive. Vis alle disse heltals par, der giver produkt -6.
1-6=-5 2-3=-1
Beregn summen af hvert par.
a=2 b=-3
Løsningen er det par, der får summen -1.
\left(-x^{2}+2x\right)+\left(-3x+6\right)
Omskriv -x^{2}-x+6 som \left(-x^{2}+2x\right)+\left(-3x+6\right).
x\left(-x+2\right)+3\left(-x+2\right)
Udx i den første og 3 i den anden gruppe.
\left(-x+2\right)\left(x+3\right)
Udfaktoriser fællesleddet -x+2 ved hjælp af fordelingsegenskaben.
x=2 x=-3
Løs -x+2=0 og x+3=0 for at finde Lignings løsninger.
\sqrt{6-2}=-2
Substituer x med 2 i ligningen \sqrt{6-x}=-x.
2=-2
Forenkling. Værdien x=2 opfylder ikke ligningen, fordi venstre og højre side har modsat fortegn.
\sqrt{6-\left(-3\right)}=-\left(-3\right)
Substituer x med -3 i ligningen \sqrt{6-x}=-x.
3=3
Forenkling. Værdien x=-3 opfylder ligningen.
x=-3
Ligningen \sqrt{6-x}=-x har en unik løsning.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}