Spring videre til hovedindholdet
Evaluer
Tick mark Image
Faktoriser
Tick mark Image

Aktie

\sqrt{\frac{81}{2}\left(2-1\right)}-\frac{\frac{\left(\frac{2}{3}-1\right)^{-2}}{\left(\frac{1}{5}\right)^{-1}}}{\left(1-\frac{1}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Tilføj 40 og \frac{1}{2} for at få \frac{81}{2}.
\sqrt{\frac{81}{2}\times 1}-\frac{\frac{\left(\frac{2}{3}-1\right)^{-2}}{\left(\frac{1}{5}\right)^{-1}}}{\left(1-\frac{1}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Subtraher 1 fra 2 for at få 1.
\sqrt{\frac{81}{2}}-\frac{\frac{\left(\frac{2}{3}-1\right)^{-2}}{\left(\frac{1}{5}\right)^{-1}}}{\left(1-\frac{1}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Multiplicer \frac{81}{2} og 1 for at få \frac{81}{2}.
\frac{\sqrt{81}}{\sqrt{2}}-\frac{\frac{\left(\frac{2}{3}-1\right)^{-2}}{\left(\frac{1}{5}\right)^{-1}}}{\left(1-\frac{1}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Omskriv kvadratroden af inddelings \sqrt{\frac{81}{2}} som opdeling af kvadratiske rødder \frac{\sqrt{81}}{\sqrt{2}}.
\frac{9}{\sqrt{2}}-\frac{\frac{\left(\frac{2}{3}-1\right)^{-2}}{\left(\frac{1}{5}\right)^{-1}}}{\left(1-\frac{1}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Beregn kvadratroden af 81, og find 9.
\frac{9\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{\frac{\left(\frac{2}{3}-1\right)^{-2}}{\left(\frac{1}{5}\right)^{-1}}}{\left(1-\frac{1}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Rationaliser \frac{9}{\sqrt{2}} ved at multiplicere tælleren og nævneren med \sqrt{2}.
\frac{9\sqrt{2}}{2}-\frac{\frac{\left(\frac{2}{3}-1\right)^{-2}}{\left(\frac{1}{5}\right)^{-1}}}{\left(1-\frac{1}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Kvadratet på \sqrt{2} er 2.
\frac{9\sqrt{2}}{2}-\frac{\frac{\left(-\frac{1}{3}\right)^{-2}}{\left(\frac{1}{5}\right)^{-1}}}{\left(1-\frac{1}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Subtraher 1 fra \frac{2}{3} for at få -\frac{1}{3}.
\frac{9\sqrt{2}}{2}-\frac{\frac{9}{\left(\frac{1}{5}\right)^{-1}}}{\left(1-\frac{1}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Beregn -\frac{1}{3} til potensen af -2, og få 9.
\frac{9\sqrt{2}}{2}-\frac{\frac{9}{5}}{\left(1-\frac{1}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Beregn \frac{1}{5} til potensen af -1, og få 5.
\frac{9\sqrt{2}}{2}-\frac{\frac{9}{5}}{\left(\frac{3}{4}\right)^{2}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Subtraher \frac{1}{4} fra 1 for at få \frac{3}{4}.
\frac{9\sqrt{2}}{2}-\frac{\frac{9}{5}}{\frac{9}{16}}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Beregn \frac{3}{4} til potensen af 2, og få \frac{9}{16}.
\frac{9\sqrt{2}}{2}-\frac{9}{5}\times \frac{16}{9}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Divider \frac{9}{5} med \frac{9}{16} ved at multiplicere \frac{9}{5} med den reciprokke værdi af \frac{9}{16}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{\left(\frac{2-\frac{1}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Multiplicer \frac{9}{5} og \frac{16}{9} for at få \frac{16}{5}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{\left(\frac{\frac{5}{3}}{\frac{3}{2}-1}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Subtraher \frac{1}{3} fra 2 for at få \frac{5}{3}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{\left(\frac{\frac{5}{3}}{\frac{1}{2}}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Subtraher 1 fra \frac{3}{2} for at få \frac{1}{2}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{\left(\frac{5}{3}\times 2\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Divider \frac{5}{3} med \frac{1}{2} ved at multiplicere \frac{5}{3} med den reciprokke værdi af \frac{1}{2}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{\left(\frac{10}{3}\right)^{-2}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Multiplicer \frac{5}{3} og 2 for at få \frac{10}{3}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{\frac{9}{100}}{\frac{\frac{1}{2}-\frac{2}{3}}{4-\frac{2}{3}}}
Beregn \frac{10}{3} til potensen af -2, og få \frac{9}{100}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{\frac{9}{100}}{\frac{-\frac{1}{6}}{4-\frac{2}{3}}}
Subtraher \frac{2}{3} fra \frac{1}{2} for at få -\frac{1}{6}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{\frac{9}{100}}{\frac{-\frac{1}{6}}{\frac{10}{3}}}
Subtraher \frac{2}{3} fra 4 for at få \frac{10}{3}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{\frac{9}{100}}{-\frac{1}{6}\times \frac{3}{10}}
Divider -\frac{1}{6} med \frac{10}{3} ved at multiplicere -\frac{1}{6} med den reciprokke værdi af \frac{10}{3}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{\frac{9}{100}}{-\frac{1}{20}}
Multiplicer -\frac{1}{6} og \frac{3}{10} for at få -\frac{1}{20}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}+\frac{9}{100}\left(-20\right)
Divider \frac{9}{100} med -\frac{1}{20} ved at multiplicere \frac{9}{100} med den reciprokke værdi af -\frac{1}{20}.
\frac{9\sqrt{2}}{2}-\frac{16}{5}-\frac{9}{5}
Multiplicer \frac{9}{100} og -20 for at få -\frac{9}{5}.
\frac{9\sqrt{2}}{2}-5
Subtraher \frac{9}{5} fra -\frac{16}{5} for at få -5.
\frac{9\sqrt{2}}{2}-\frac{5\times 2}{2}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Multiplicer 5 gange \frac{2}{2}.
\frac{9\sqrt{2}-5\times 2}{2}
Eftersom \frac{9\sqrt{2}}{2} og \frac{5\times 2}{2} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{9\sqrt{2}-10}{2}
Lav multiplikationerne i 9\sqrt{2}-5\times 2.