Spring videre til hovedindholdet
Differentier w.r.t. θ_1
Tick mark Image
Evaluer
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{\mathrm{d}}{\mathrm{d}\theta _{1}}(\sin(\theta _{1}))=\left(\lim_{h\to 0}\frac{\sin(\theta _{1}+h)-\sin(\theta _{1})}{h}\right)
For en funktion f\left(x\right) er afledningen lig med grænsen på \frac{f\left(x+h\right)-f\left(x\right)}{h} med h gående mod 0, hvis denne grænse findes.
\lim_{h\to 0}\frac{\sin(h+\theta _{1})-\sin(\theta _{1})}{h}
Brug sumformlen for sinus.
\lim_{h\to 0}\frac{\sin(\theta _{1})\left(\cos(h)-1\right)+\cos(\theta _{1})\sin(h)}{h}
Udfaktoriser \sin(\theta _{1}).
\left(\lim_{h\to 0}\sin(\theta _{1})\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\theta _{1})\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Omskriv grænsen.
\sin(\theta _{1})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta _{1})\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Brug det faktum, at \theta _{1} er en konstant, når der beregnes grænser med h gående mod 0.
\sin(\theta _{1})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta _{1})
Grænsen \lim_{\theta _{1}\to 0}\frac{\sin(\theta _{1})}{\theta _{1}} er 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Hvis du vil evaluere grænsen \lim_{h\to 0}\frac{\cos(h)-1}{h}, skal du først multiplicere tælleren og nævneren med \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Multiplicer \cos(h)+1 gange \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Brug Pythagoras-identiteten.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Omskriv grænsen.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Grænsen \lim_{\theta _{1}\to 0}\frac{\sin(\theta _{1})}{\theta _{1}} er 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Brug det faktum, at \frac{\sin(h)}{\cos(h)+1} er kontinuerlig ved 0.
\cos(\theta _{1})
Substituer værdien 0 i udtrykket \sin(\theta _{1})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta _{1}).