Spring videre til hovedindholdet
Differentier w.r.t. ξ
Tick mark Image
Evaluer
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{\mathrm{d}}{\mathrm{d}\xi }(\sin(\xi ))=\left(\lim_{h\to 0}\frac{\sin(\xi +h)-\sin(\xi )}{h}\right)
For en funktion f\left(x\right) er afledningen lig med grænsen på \frac{f\left(x+h\right)-f\left(x\right)}{h} med h gående mod 0, hvis denne grænse findes.
\lim_{h\to 0}\frac{\sin(h+\xi )-\sin(\xi )}{h}
Brug sumformlen for sinus.
\lim_{h\to 0}\frac{\sin(\xi )\left(\cos(h)-1\right)+\cos(\xi )\sin(h)}{h}
Udfaktoriser \sin(\xi ).
\left(\lim_{h\to 0}\sin(\xi )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\xi )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Omskriv grænsen.
\sin(\xi )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\xi )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Brug det faktum, at \xi er en konstant, når der beregnes grænser med h gående mod 0.
\sin(\xi )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\xi )
Grænsen \lim_{\xi \to 0}\frac{\sin(\xi )}{\xi } er 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Hvis du vil evaluere grænsen \lim_{h\to 0}\frac{\cos(h)-1}{h}, skal du først multiplicere tælleren og nævneren med \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Multiplicer \cos(h)+1 gange \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Brug Pythagoras-identiteten.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Omskriv grænsen.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Grænsen \lim_{\xi \to 0}\frac{\sin(\xi )}{\xi } er 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Brug det faktum, at \frac{\sin(h)}{\cos(h)+1} er kontinuerlig ved 0.
\cos(\xi )
Substituer værdien 0 i udtrykket \sin(\xi )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\xi ).