Spring videre til hovedindholdet
Evaluer
Tick mark Image
Differentier w.r.t. x
Tick mark Image

Lignende problemer fra websøgning

Aktie

\int \frac{x^{3}}{4}\mathrm{d}x+\int -\frac{x^{2}}{3}\mathrm{d}x+\int \frac{x}{2}\mathrm{d}x
Integrer summen ord for ord.
\frac{\int x^{3}\mathrm{d}x}{4}-\frac{\int x^{2}\mathrm{d}x}{3}+\frac{\int x\mathrm{d}x}{2}
Udfaktoriser konstanten i hver af ordene.
\frac{x^{4}}{16}-\frac{\int x^{2}\mathrm{d}x}{3}+\frac{\int x\mathrm{d}x}{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} til k\neq -1, skal du erstatte \int x^{3}\mathrm{d}x med \frac{x^{4}}{4}. Multiplicer \frac{1}{4} gange \frac{x^{4}}{4}.
\frac{x^{4}}{16}-\frac{x^{3}}{9}+\frac{\int x\mathrm{d}x}{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} til k\neq -1, skal du erstatte \int x^{2}\mathrm{d}x med \frac{x^{3}}{3}. Multiplicer -\frac{1}{3} gange \frac{x^{3}}{3}.
\frac{x^{4}}{16}-\frac{x^{3}}{9}+\frac{x^{2}}{4}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} til k\neq -1, skal du erstatte \int x\mathrm{d}x med \frac{x^{2}}{2}. Multiplicer \frac{1}{2} gange \frac{x^{2}}{2}.
\frac{x^{4}}{16}-\frac{x^{3}}{9}+\frac{x^{2}}{4}+С
Hvis F\left(x\right) er en anti afledt af f\left(x\right), gives der F\left(x\right)+C til sættet af alle anti derivater af f\left(x\right). Derfor skal du føje konstanten for integrations C\in \mathrm{R} til resultatet.