Spring videre til hovedindholdet
Evaluer
Tick mark Image

Lignende problemer fra websøgning

Aktie

\int 528x+384x^{2}\mathrm{d}x
Evaluer den ubestemte integral først.
\int 528x\mathrm{d}x+\int 384x^{2}\mathrm{d}x
Integrer summen ord for ord.
528\int x\mathrm{d}x+384\int x^{2}\mathrm{d}x
Udfaktoriser konstanten i hver af ordene.
264x^{2}+384\int x^{2}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} til k\neq -1, skal du erstatte \int x\mathrm{d}x med \frac{x^{2}}{2}. Multiplicer 528 gange \frac{x^{2}}{2}.
264x^{2}+128x^{3}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} til k\neq -1, skal du erstatte \int x^{2}\mathrm{d}x med \frac{x^{3}}{3}. Multiplicer 384 gange \frac{x^{3}}{3}.
264\times \left(0\times 5\right)^{2}+128\times \left(0\times 5\right)^{3}-\left(264\times 0^{2}+128\times 0^{3}\right)
Den definitive integral er antiafledningen af udtrykket evalueret ved den øvre integrationsgrænse minus antiafledningen evalueret ved den nedre integrationsgrænse.
0
Forenkling.