Løs for x
\left\{\begin{matrix}x\in \mathrm{R}\text{, }&С\leq -y^{2}\\x\in (-\infty,\frac{-\sqrt{y^{2}+С}-y}{2}]\cup [\frac{\sqrt{y^{2}+С}-y}{2},\infty)\text{, }&С\geq -y^{2}\end{matrix}\right,
Løs for y
\left\{\begin{matrix}y\geq -x-\frac{С}{x}+\frac{6}{x}\text{, }&x>0\\y\in \mathrm{R}\text{, }&С\geq 6\text{ and }x=0\\y=-x-\frac{С}{x}+\frac{6}{x}\text{, }&С\geq 6\text{ or }x\neq 0\\y\leq -x-\frac{С}{x}+\frac{6}{x}\text{, }&x<0\\y\leq \text{Indeterminate}\text{, }&\left(\text{Indeterminate}<-x-\frac{С}{x}+\frac{6}{x}\text{ and }x<0\right)\text{ or }\left(С_{1}\geq 6\text{ and }x\leq 0\right)\end{matrix}\right,
Aktie
Kopieret til udklipsholder
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}