Evaluer
-\frac{8xa^{2}b^{4}}{9}+С
Differentier w.r.t. x
-\frac{8a^{2}b^{4}}{9}
Aktie
Kopieret til udklipsholder
\int \left(-\frac{1}{3}ab^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Multiplicer a og a for at få a^{2}.
\int \left(-\frac{1}{3}\right)^{2}a^{2}\left(b^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Udvid \left(-\frac{1}{3}ab^{2}\right)^{2}.
\int \left(-\frac{1}{3}\right)^{2}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
\int \frac{1}{9}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Beregn -\frac{1}{3} til potensen af 2, og få \frac{1}{9}.
\int \frac{1}{9}a^{2}b^{4}-\left(-6a^{2}b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Multiplicer 2 og -3 for at få -6.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Udvid \left(-6a^{2}b^{2}\right)^{2}.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Beregn -6 til potensen af 2, og få 36.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}\left(b^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Udvid \left(2ab^{2}\right)^{2}.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(4a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Beregn 2 til potensen af 2, og få 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{2}b^{4}a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Multiplicer 4 og -9 for at få -36.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{4}b^{4}+a^{2}b^{4}\right)\mathrm{d}x
Hvis du vil gange potenser for den samme base, skal du tilføje deres eksponenter. Tilføj 2 og 2 for at få 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}+36a^{4}b^{4}-a^{2}b^{4}\mathrm{d}x
For at finde det modsatte af -36a^{4}b^{4}+a^{2}b^{4} skal du finde det modsatte af hvert led.
\int \frac{1}{9}a^{2}b^{4}-a^{2}b^{4}\mathrm{d}x
Kombiner -36a^{4}b^{4} og 36a^{4}b^{4} for at få 0.
\int -\frac{8}{9}a^{2}b^{4}\mathrm{d}x
Kombiner \frac{1}{9}a^{2}b^{4} og -a^{2}b^{4} for at få -\frac{8}{9}a^{2}b^{4}.
\left(-\frac{8a^{2}b^{4}}{9}\right)x
Find integralen af -\frac{8a^{2}b^{4}}{9} ved hjælp af tabellen med almindelige integraler for \int a\mathrm{d}x=ax.
-\frac{8a^{2}b^{4}x}{9}
Forenkling.
-\frac{8a^{2}b^{4}x}{9}+С
Hvis F\left(x\right) er en anti afledt af f\left(x\right), gives der F\left(x\right)+C til sættet af alle anti derivater af f\left(x\right). Derfor skal du føje konstanten for integrations C\in \mathrm{R} til resultatet.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}