Spring videre til hovedindholdet
Evaluer
Tick mark Image
Differentier w.r.t. x
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{x^{2}}-\frac{2x}{x^{2}})
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for x^{2} og x er x^{2}. Multiplicer \frac{2}{x} gange \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-2x}{x^{2}})
Eftersom \frac{2}{x^{2}} og \frac{2x}{x^{2}} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+2)-\left(-2x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})}{\left(x^{2}\right)^{2}}
For to vilkårlige differentiable funktioner er afledningen af kvotienten for to funktioner lig med nævneren gange afledningen af tælleren minus tælleren gange afledningen af nævneren, alle sammen divideret med kvadratet af nævneren.
\frac{x^{2}\left(-2\right)x^{1-1}-\left(-2x^{1}+2\right)\times 2x^{2-1}}{\left(x^{2}\right)^{2}}
Afledningen af en polynomisk værdi er summen af afledningerne af dens udtryk. Afledningen af et hvilket som helst konstant udtryk er 0. Afledningen af ax^{n} er nax^{n-1}.
\frac{x^{2}\left(-2\right)x^{0}-\left(-2x^{1}+2\right)\times 2x^{1}}{\left(x^{2}\right)^{2}}
Udfør aritmetikken.
\frac{x^{2}\left(-2\right)x^{0}-\left(-2x^{1}\times 2x^{1}+2\times 2x^{1}\right)}{\left(x^{2}\right)^{2}}
Udvid ved hjælp af fordelingsegenskaben.
\frac{-2x^{2}-\left(-2\times 2x^{1+1}+2\times 2x^{1}\right)}{\left(x^{2}\right)^{2}}
Hvis du vil multiplicere potenser for samme base, skal du addere deres eksponenter.
\frac{-2x^{2}-\left(-4x^{2}+4x^{1}\right)}{\left(x^{2}\right)^{2}}
Udfør aritmetikken.
\frac{-2x^{2}-\left(-4x^{2}\right)-4x^{1}}{\left(x^{2}\right)^{2}}
Fjern unødvendige parenteser.
\frac{\left(-2-\left(-4\right)\right)x^{2}-4x^{1}}{\left(x^{2}\right)^{2}}
Kombiner ens led.
\frac{2x^{2}-4x^{1}}{\left(x^{2}\right)^{2}}
Subtraher -4 fra -2.
\frac{2x\left(x^{1}-2x^{0}\right)}{\left(x^{2}\right)^{2}}
Udfaktoriser 2x.
\frac{2x\left(x^{1}-2x^{0}\right)}{x^{2\times 2}}
Hvis du vil hæve en potens til en anden potens, skal du gange eksponenterne.
\frac{2x\left(x^{1}-2x^{0}\right)}{x^{4}}
Multiplicer 2 gange 2.
\frac{2\left(x^{1}-2x^{0}\right)}{x^{4-1}}
Hvis du vil dividere potenserne for den samme base, skal du subtrahere tællerens eksponent fra nævnerens eksponent.
\frac{2\left(x^{1}-2x^{0}\right)}{x^{3}}
Subtraher 1 fra 4.
\frac{2\left(x-2x^{0}\right)}{x^{3}}
For ethvert led t, t^{1}=t.
\frac{2\left(x-2\times 1\right)}{x^{3}}
For ethvert led t bortset fra 0, t^{0}=1.
\frac{2\left(x-2\right)}{x^{3}}
For ethvert led t, t\times 1=t og 1t=t.