Løs for x (complex solution)
\left\{\begin{matrix}x=-\frac{z+2yz-y^{2}}{1-8y}\text{, }&y\neq \frac{1}{8}\text{ and }y\neq 0\\x\in \mathrm{C}\text{, }&y=\frac{1}{8}\text{ and }z=\frac{1}{80}\end{matrix}\right,
Løs for x
\left\{\begin{matrix}x=-\frac{z+2yz-y^{2}}{1-8y}\text{, }&y\neq \frac{1}{8}\text{ and }y\neq 0\\x\in \mathrm{R}\text{, }&y=\frac{1}{8}\text{ and }z=\frac{1}{80}\end{matrix}\right,
Løs for y (complex solution)
\left\{\begin{matrix}y=\sqrt{16x^{2}-8xz+x+z^{2}+z}+z-4x\text{, }&\left(z\neq 0\text{ and }arg(z)<\pi \right)\text{ or }x\neq -z\\y=-\sqrt{16x^{2}-8xz+x+z^{2}+z}+z-4x\text{, }&\left(z\neq 0\text{ and }arg(z)\geq \pi \right)\text{ or }x\neq -z\end{matrix}\right,
Løs for y
\left\{\begin{matrix}y=\sqrt{16x^{2}-8xz+x+z^{2}+z}+z-4x\text{, }&z\geq \frac{1}{80}\text{ or }\left(z>0\text{ and }x\leq \frac{z}{4}-\frac{\sqrt{1-80z}}{32}-\frac{1}{32}\text{ and }z\leq \frac{1}{80}\right)\text{ or }\left(z>0\text{ and }x\geq \frac{z}{4}+\frac{\sqrt{1-80z}}{32}-\frac{1}{32}\text{ and }z\leq \frac{1}{80}\right)\text{ or }\left(x\neq -z\text{ and }x\leq \frac{z}{4}-\frac{\sqrt{1-80z}}{32}-\frac{1}{32}\text{ and }z\leq \frac{1}{80}\right)\text{ or }\left(x\neq -z\text{ and }x\geq \frac{z}{4}+\frac{\sqrt{1-80z}}{32}-\frac{1}{32}\text{ and }z\leq \frac{1}{80}\right)\\y=-\sqrt{16x^{2}-8xz+x+z^{2}+z}+z-4x\text{, }&\left(x\leq \frac{z}{4}-\frac{\sqrt{1-80z}}{32}-\frac{1}{32}\text{ and }z<0\right)\text{ or }\left(x\geq \frac{z}{4}+\frac{\sqrt{1-80z}}{32}-\frac{1}{32}\text{ and }z<0\right)\text{ or }\left(x\neq -z\text{ and }z\geq \frac{1}{80}\right)\text{ or }\left(x\neq -z\text{ and }x\leq \frac{z}{4}-\frac{\sqrt{1-80z}}{32}-\frac{1}{32}\text{ and }z\leq \frac{1}{80}\right)\text{ or }\left(x\neq -z\text{ and }x\geq \frac{z}{4}+\frac{\sqrt{1-80z}}{32}-\frac{1}{32}\text{ and }z\leq \frac{1}{80}\right)\end{matrix}\right,
Aktie
Kopieret til udklipsholder
x+z+2\left(x+z\right)y=10xy+yy
Multiplicer begge sider af ligningen med y.
x+z+2\left(x+z\right)y=10xy+y^{2}
Multiplicer y og y for at få y^{2}.
x+z+\left(2x+2z\right)y=10xy+y^{2}
Brug fordelingsegenskaben til at multiplicere 2 med x+z.
x+z+2xy+2zy=10xy+y^{2}
Brug fordelingsegenskaben til at multiplicere 2x+2z med y.
x+z+2xy+2zy-10xy=y^{2}
Subtraher 10xy fra begge sider.
x+z-8xy+2zy=y^{2}
Kombiner 2xy og -10xy for at få -8xy.
x-8xy+2zy=y^{2}-z
Subtraher z fra begge sider.
x-8xy=y^{2}-z-2zy
Subtraher 2zy fra begge sider.
\left(1-8y\right)x=y^{2}-z-2zy
Kombiner alle led med x.
\left(1-8y\right)x=y^{2}-2yz-z
Ligningen er nu i standardform.
\frac{\left(1-8y\right)x}{1-8y}=\frac{y^{2}-2yz-z}{1-8y}
Divider begge sider med -8y+1.
x=\frac{y^{2}-2yz-z}{1-8y}
Division med -8y+1 annullerer multiplikationen med -8y+1.
x+z+2\left(x+z\right)y=10xy+yy
Multiplicer begge sider af ligningen med y.
x+z+2\left(x+z\right)y=10xy+y^{2}
Multiplicer y og y for at få y^{2}.
x+z+\left(2x+2z\right)y=10xy+y^{2}
Brug fordelingsegenskaben til at multiplicere 2 med x+z.
x+z+2xy+2zy=10xy+y^{2}
Brug fordelingsegenskaben til at multiplicere 2x+2z med y.
x+z+2xy+2zy-10xy=y^{2}
Subtraher 10xy fra begge sider.
x+z-8xy+2zy=y^{2}
Kombiner 2xy og -10xy for at få -8xy.
x-8xy+2zy=y^{2}-z
Subtraher z fra begge sider.
x-8xy=y^{2}-z-2zy
Subtraher 2zy fra begge sider.
\left(1-8y\right)x=y^{2}-z-2zy
Kombiner alle led med x.
\left(1-8y\right)x=y^{2}-2yz-z
Ligningen er nu i standardform.
\frac{\left(1-8y\right)x}{1-8y}=\frac{y^{2}-2yz-z}{1-8y}
Divider begge sider med -8y+1.
x=\frac{y^{2}-2yz-z}{1-8y}
Division med -8y+1 annullerer multiplikationen med -8y+1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}