Løs for x
x = -\frac{19}{3} = -6\frac{1}{3} \approx -6,333333333
Graf
Aktie
Kopieret til udklipsholder
1+3\left(x+4\right)\left(-2\right)=3\times 5
Variablen x må ikke være lig med -4, fordi division med nul ikke er defineret. Gang begge sider af ligningen med 3\left(x+4\right), det mindste fælles multiplum af 3x+12,x+4.
1-6\left(x+4\right)=3\times 5
Multiplicer 3 og -2 for at få -6.
1-6x-24=3\times 5
Brug fordelingsegenskaben til at multiplicere -6 med x+4.
-23-6x=3\times 5
Subtraher 24 fra 1 for at få -23.
-23-6x=15
Multiplicer 3 og 5 for at få 15.
-6x=15+23
Tilføj 23 på begge sider.
-6x=38
Tilføj 15 og 23 for at få 38.
x=\frac{38}{-6}
Divider begge sider med -6.
x=-\frac{19}{3}
Reducer fraktionen \frac{38}{-6} til de laveste led ved at udtrække og annullere 2.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}