Spring videre til hovedindholdet
Evaluer
Tick mark Image
Udvid
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

\frac{x}{\left(x-3\right)\left(2x-1\right)}+\frac{x-3}{\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Faktoriser 2x^{2}-7x+3. Faktoriser 4x^{2}+4x-3.
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for \left(x-3\right)\left(2x-1\right) og \left(2x-1\right)\left(2x+3\right) er \left(x-3\right)\left(2x-1\right)\left(2x+3\right). Multiplicer \frac{x}{\left(x-3\right)\left(2x-1\right)} gange \frac{2x+3}{2x+3}. Multiplicer \frac{x-3}{\left(2x-1\right)\left(2x+3\right)} gange \frac{x-3}{x-3}.
\frac{x\left(2x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Da \frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} og \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} har den samme fællesnævner, skal du addere dem ved at tilføje deres tællere.
\frac{2x^{2}+3x+x^{2}-3x-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Lav multiplikationerne i x\left(2x+3\right)+\left(x-3\right)\left(x-3\right).
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Kombiner ens led i 2x^{2}+3x+x^{2}-3x-3x+9.
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{x\left(2x-3\right)}
Faktoriser 2x^{2}-3x.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for \left(x-3\right)\left(2x-1\right)\left(2x+3\right) og x\left(2x-3\right) er x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right). Multiplicer \frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} gange \frac{x\left(2x-3\right)}{x\left(2x-3\right)}. Multiplicer \frac{x^{2}+1}{x\left(2x-3\right)} gange \frac{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Eftersom \frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} og \frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Lav multiplikationerne i \left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right).
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Kombiner ens led i 6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9.
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{8x^{5}-28x^{4}-6x^{3}+63x^{2}-27x}
Udvid x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right).
\frac{x}{\left(x-3\right)\left(2x-1\right)}+\frac{x-3}{\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Faktoriser 2x^{2}-7x+3. Faktoriser 4x^{2}+4x-3.
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for \left(x-3\right)\left(2x-1\right) og \left(2x-1\right)\left(2x+3\right) er \left(x-3\right)\left(2x-1\right)\left(2x+3\right). Multiplicer \frac{x}{\left(x-3\right)\left(2x-1\right)} gange \frac{2x+3}{2x+3}. Multiplicer \frac{x-3}{\left(2x-1\right)\left(2x+3\right)} gange \frac{x-3}{x-3}.
\frac{x\left(2x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Da \frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} og \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} har den samme fællesnævner, skal du addere dem ved at tilføje deres tællere.
\frac{2x^{2}+3x+x^{2}-3x-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Lav multiplikationerne i x\left(2x+3\right)+\left(x-3\right)\left(x-3\right).
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Kombiner ens led i 2x^{2}+3x+x^{2}-3x-3x+9.
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{x\left(2x-3\right)}
Faktoriser 2x^{2}-3x.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for \left(x-3\right)\left(2x-1\right)\left(2x+3\right) og x\left(2x-3\right) er x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right). Multiplicer \frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} gange \frac{x\left(2x-3\right)}{x\left(2x-3\right)}. Multiplicer \frac{x^{2}+1}{x\left(2x-3\right)} gange \frac{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Eftersom \frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} og \frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Lav multiplikationerne i \left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right).
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Kombiner ens led i 6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9.
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{8x^{5}-28x^{4}-6x^{3}+63x^{2}-27x}
Udvid x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right).