Evaluer
-\frac{1}{y-1}
Udvid
-\frac{1}{y-1}
Aktie
Kopieret til udklipsholder
\frac{\frac{x^{2}}{y-1}\times \frac{\left(x-1\right)^{2}}{x\left(x-1\right)}}{\frac{x^{3}-x}{y-1-\frac{x}{1}-y}}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{x^{2}-2x+1}{x^{2}-x}.
\frac{\frac{x^{2}}{y-1}\times \frac{x-1}{x}}{\frac{x^{3}-x}{y-1-\frac{x}{1}-y}}
Udlign x-1 i både tælleren og nævneren.
\frac{\frac{x^{2}\left(x-1\right)}{\left(y-1\right)x}}{\frac{x^{3}-x}{y-1-\frac{x}{1}-y}}
Multiplicer \frac{x^{2}}{y-1} gange \frac{x-1}{x} ved at multiplicere tæller gange tæller og nævner gange nævner.
\frac{\frac{x\left(x-1\right)}{y-1}}{\frac{x^{3}-x}{y-1-\frac{x}{1}-y}}
Udlign x i både tælleren og nævneren.
\frac{\frac{x\left(x-1\right)}{y-1}}{\frac{x^{3}-x}{y-1-x-y}}
Hvad som helst divideret med én er lig med sig selv.
\frac{\frac{x\left(x-1\right)}{y-1}}{\frac{x^{3}-x}{-1-x}}
Kombiner y og -y for at få 0.
\frac{\frac{x\left(x-1\right)}{y-1}}{\frac{x\left(x-1\right)\left(x+1\right)}{-x-1}}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{x^{3}-x}{-1-x}.
\frac{\frac{x\left(x-1\right)}{y-1}}{\frac{-x\left(x-1\right)\left(-x-1\right)}{-x-1}}
Udtræk det negative tegn i 1+x.
\frac{\frac{x\left(x-1\right)}{y-1}}{-x\left(x-1\right)}
Udlign -x-1 i både tælleren og nævneren.
\frac{\frac{x\left(x-1\right)}{y-1}}{-x^{2}+x}
Udvid udtrykket.
\frac{x\left(x-1\right)}{\left(y-1\right)\left(-x^{2}+x\right)}
Udtryk \frac{\frac{x\left(x-1\right)}{y-1}}{-x^{2}+x} som en enkelt brøk.
\frac{x\left(x-1\right)}{x\left(y-1\right)\left(-x+1\right)}
Faktoriser de udtryk, der ikke allerede er faktoriseret.
\frac{-x\left(-x+1\right)}{x\left(y-1\right)\left(-x+1\right)}
Udtræk det negative tegn i -1+x.
\frac{-1}{y-1}
Udlign x\left(-x+1\right) i både tælleren og nævneren.
\frac{\frac{x^{2}}{y-1}\times \frac{\left(x-1\right)^{2}}{x\left(x-1\right)}}{\frac{x^{3}-x}{y-1-\frac{x}{1}-y}}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{x^{2}-2x+1}{x^{2}-x}.
\frac{\frac{x^{2}}{y-1}\times \frac{x-1}{x}}{\frac{x^{3}-x}{y-1-\frac{x}{1}-y}}
Udlign x-1 i både tælleren og nævneren.
\frac{\frac{x^{2}\left(x-1\right)}{\left(y-1\right)x}}{\frac{x^{3}-x}{y-1-\frac{x}{1}-y}}
Multiplicer \frac{x^{2}}{y-1} gange \frac{x-1}{x} ved at multiplicere tæller gange tæller og nævner gange nævner.
\frac{\frac{x\left(x-1\right)}{y-1}}{\frac{x^{3}-x}{y-1-\frac{x}{1}-y}}
Udlign x i både tælleren og nævneren.
\frac{\frac{x\left(x-1\right)}{y-1}}{\frac{x^{3}-x}{y-1-x-y}}
Hvad som helst divideret med én er lig med sig selv.
\frac{\frac{x\left(x-1\right)}{y-1}}{\frac{x^{3}-x}{-1-x}}
Kombiner y og -y for at få 0.
\frac{\frac{x\left(x-1\right)}{y-1}}{\frac{x\left(x-1\right)\left(x+1\right)}{-x-1}}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{x^{3}-x}{-1-x}.
\frac{\frac{x\left(x-1\right)}{y-1}}{\frac{-x\left(x-1\right)\left(-x-1\right)}{-x-1}}
Udtræk det negative tegn i 1+x.
\frac{\frac{x\left(x-1\right)}{y-1}}{-x\left(x-1\right)}
Udlign -x-1 i både tælleren og nævneren.
\frac{\frac{x\left(x-1\right)}{y-1}}{-x^{2}+x}
Udvid udtrykket.
\frac{x\left(x-1\right)}{\left(y-1\right)\left(-x^{2}+x\right)}
Udtryk \frac{\frac{x\left(x-1\right)}{y-1}}{-x^{2}+x} som en enkelt brøk.
\frac{x\left(x-1\right)}{x\left(y-1\right)\left(-x+1\right)}
Faktoriser de udtryk, der ikke allerede er faktoriseret.
\frac{-x\left(-x+1\right)}{x\left(y-1\right)\left(-x+1\right)}
Udtræk det negative tegn i -1+x.
\frac{-1}{y-1}
Udlign x\left(-x+1\right) i både tælleren og nævneren.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}