Spring videre til hovedindholdet
Evaluer
Tick mark Image
Udvid
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Faktoriser 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for \left(12-c\right)^{2} og c\left(-c+12\right) er c\left(-c+12\right)\left(-c+12\right)^{2}. Multiplicer \frac{c+12}{\left(12-c\right)^{2}} gange \frac{c\left(-c+12\right)}{c\left(-c+12\right)}. Multiplicer \frac{12}{c\left(-c+12\right)} gange \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}}.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Da \frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} og \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}} har den samme fællesnævner, skal du addere dem ved at tilføje deres tællere.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Lav multiplikationerne i \left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Kombiner ens led i -c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Udlign -c+12 i både tælleren og nævneren.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
Udvid c\left(-c+12\right)^{2}.
\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Faktoriser 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for \left(12-c\right)^{2} og c\left(-c+12\right) er c\left(-c+12\right)\left(-c+12\right)^{2}. Multiplicer \frac{c+12}{\left(12-c\right)^{2}} gange \frac{c\left(-c+12\right)}{c\left(-c+12\right)}. Multiplicer \frac{12}{c\left(-c+12\right)} gange \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}}.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Da \frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} og \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}} har den samme fællesnævner, skal du addere dem ved at tilføje deres tællere.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Lav multiplikationerne i \left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Kombiner ens led i -c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Udlign -c+12 i både tælleren og nævneren.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
Udvid c\left(-c+12\right)^{2}.