Spring videre til hovedindholdet
Evaluer
Tick mark Image
Differentier w.r.t. a
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{a}{a\left(a-1\right)}
Faktoriser de udtryk, der ikke allerede er faktoriseret.
\frac{1}{a-1}
Udlign a i både tælleren og nævneren.
\frac{\left(a^{2}-a^{1}\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{1})-a^{1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-a^{1})}{\left(a^{2}-a^{1}\right)^{2}}
For to vilkårlige differentiable funktioner er afledningen af kvotienten for to funktioner lig med nævneren gange afledningen af tælleren minus tælleren gange afledningen af nævneren, alle sammen divideret med kvadratet af nævneren.
\frac{\left(a^{2}-a^{1}\right)a^{1-1}-a^{1}\left(2a^{2-1}-a^{1-1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Afledningen af en polynomisk værdi er summen af afledningerne af dens udtryk. Afledningen af et hvilket som helst konstant udtryk er 0. Afledningen af ax^{n} er nax^{n-1}.
\frac{\left(a^{2}-a^{1}\right)a^{0}-a^{1}\left(2a^{1}-a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Forenkling.
\frac{a^{2}a^{0}-a^{1}a^{0}-a^{1}\left(2a^{1}-a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Multiplicer a^{2}-a^{1} gange a^{0}.
\frac{a^{2}a^{0}-a^{1}a^{0}-\left(a^{1}\times 2a^{1}+a^{1}\left(-1\right)a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Multiplicer a^{1} gange 2a^{1}-a^{0}.
\frac{a^{2}-a^{1}-\left(2a^{1+1}-a^{1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Hvis du vil multiplicere potenser for samme base, skal du addere deres eksponenter.
\frac{a^{2}-a^{1}-\left(2a^{2}-a^{1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Forenkling.
\frac{-a^{2}}{\left(a^{2}-a^{1}\right)^{2}}
Kombiner ens led.
\frac{-a^{2}}{\left(a^{2}-a\right)^{2}}
For ethvert led t, t^{1}=t.