Spring videre til hovedindholdet
Evaluer
Tick mark Image
Differentier w.r.t. a
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for a-1 og a+1 er \left(a-1\right)\left(a+1\right). Multiplicer \frac{a^{5}}{a-1} gange \frac{a+1}{a+1}. Multiplicer \frac{a^{2}}{a+1} gange \frac{a-1}{a-1}.
\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Eftersom \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} og \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Lav multiplikationerne i a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for \left(a-1\right)\left(a+1\right) og a-1 er \left(a-1\right)\left(a+1\right). Multiplicer \frac{1}{a-1} gange \frac{a+1}{a+1}.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Eftersom \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} og \frac{a+1}{\left(a-1\right)\left(a+1\right)} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Lav multiplikationerne i a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1}
Udlign a-1 i både tælleren og nævneren.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1}
Da \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} og \frac{1}{a+1} har den samme fællesnævner, skal du addere dem ved at tilføje deres tællere.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}
Kombiner ens led i a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)
Udlign a+1 i både tælleren og nævneren.
a^{4}+a^{3}+a^{2}+2
Udvid udtrykket.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for a-1 og a+1 er \left(a-1\right)\left(a+1\right). Multiplicer \frac{a^{5}}{a-1} gange \frac{a+1}{a+1}. Multiplicer \frac{a^{2}}{a+1} gange \frac{a-1}{a-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Eftersom \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} og \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Lav multiplikationerne i a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for \left(a-1\right)\left(a+1\right) og a-1 er \left(a-1\right)\left(a+1\right). Multiplicer \frac{1}{a-1} gange \frac{a+1}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Eftersom \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} og \frac{a+1}{\left(a-1\right)\left(a+1\right)} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Lav multiplikationerne i a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1})
Udlign a-1 i både tælleren og nævneren.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1})
Da \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} og \frac{1}{a+1} har den samme fællesnævner, skal du addere dem ved at tilføje deres tællere.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1})
Kombiner ens led i a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1})
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right))
Udlign a+1 i både tælleren og nævneren.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3}+a^{2}+2)
Udvid udtrykket.
4a^{4-1}+3a^{3-1}+2a^{2-1}
Afledningen af en polynomisk værdi er summen af afledningerne af dens udtryk. Afledningen af et hvilket som helst konstant udtryk er 0. Afledningen af ax^{n} er nax^{n-1}.
4a^{3}+3a^{3-1}+2a^{2-1}
Subtraher 1 fra 4.
4a^{3}+3a^{2}+2a^{2-1}
Subtraher 1 fra 3.
4a^{3}+3a^{2}+2a^{1}
Subtraher 1 fra 2.
4a^{3}+3a^{2}+2a
For ethvert led t, t^{1}=t.