Spring videre til hovedindholdet
Evaluer
Tick mark Image
Udvid
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{\left(a-2\right)\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a+2\right)}+\frac{a}{a^{3}+8}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{a^{3}-8}{a^{2}-4}.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{a^{3}+8}
Udlign a-2 i både tælleren og nævneren.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Faktoriser a^{3}+8.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for a+2 og \left(a+2\right)\left(a^{2}-2a+4\right) er \left(a+2\right)\left(a^{2}-2a+4\right). Multiplicer \frac{a^{2}+2a+4}{a+2} gange \frac{a^{2}-2a+4}{a^{2}-2a+4}.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Da \frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)} og \frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)} har den samme fællesnævner, skal du addere dem ved at tilføje deres tællere.
\frac{a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Lav multiplikationerne i \left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a.
\frac{a^{4}+4a^{2}+a+16}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Kombiner ens led i a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a.
\frac{a^{4}+4a^{2}+a+16}{a^{3}+8}
Udvid \left(a+2\right)\left(a^{2}-2a+4\right).
\frac{\left(a-2\right)\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a+2\right)}+\frac{a}{a^{3}+8}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{a^{3}-8}{a^{2}-4}.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{a^{3}+8}
Udlign a-2 i både tælleren og nævneren.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Faktoriser a^{3}+8.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for a+2 og \left(a+2\right)\left(a^{2}-2a+4\right) er \left(a+2\right)\left(a^{2}-2a+4\right). Multiplicer \frac{a^{2}+2a+4}{a+2} gange \frac{a^{2}-2a+4}{a^{2}-2a+4}.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Da \frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)} og \frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)} har den samme fællesnævner, skal du addere dem ved at tilføje deres tællere.
\frac{a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Lav multiplikationerne i \left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a.
\frac{a^{4}+4a^{2}+a+16}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Kombiner ens led i a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a.
\frac{a^{4}+4a^{2}+a+16}{a^{3}+8}
Udvid \left(a+2\right)\left(a^{2}-2a+4\right).