Evaluer
\frac{1}{2\left(x-3\right)}
Faktoriser
\frac{1}{2\left(x-3\right)}
Graf
Aktie
Kopieret til udklipsholder
\frac{5x}{2x\left(x-3\right)}-\frac{2x}{x^{2}-3x}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{5x}{2x^{2}-6x}.
\frac{5}{2\left(x-3\right)}-\frac{2x}{x^{2}-3x}
Udlign x i både tælleren og nævneren.
\frac{5}{2\left(x-3\right)}-\frac{2x}{x\left(x-3\right)}
Faktoriser de udtryk, der ikke allerede er faktoriseret i \frac{2x}{x^{2}-3x}.
\frac{5}{2\left(x-3\right)}-\frac{2}{x-3}
Udlign x i både tælleren og nævneren.
\frac{5}{2\left(x-3\right)}-\frac{2\times 2}{2\left(x-3\right)}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for 2\left(x-3\right) og x-3 er 2\left(x-3\right). Multiplicer \frac{2}{x-3} gange \frac{2}{2}.
\frac{5-2\times 2}{2\left(x-3\right)}
Eftersom \frac{5}{2\left(x-3\right)} og \frac{2\times 2}{2\left(x-3\right)} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{5-4}{2\left(x-3\right)}
Lav multiplikationerne i 5-2\times 2.
\frac{1}{2\left(x-3\right)}
Lav beregningerne i 5-4.
\frac{1}{2x-6}
Udvid 2\left(x-3\right).
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}