Evaluer
-1-\frac{1}{3}i\approx -1-0,333333333i
Reel del
-1
Aktie
Kopieret til udklipsholder
\frac{\left(5+5i\right)\left(-6+3i\right)}{\left(-6-3i\right)\left(-6+3i\right)}
Multiplicer både tæller og nævner med nævnerens komplekse konjugation, -6+3i.
\frac{\left(5+5i\right)\left(-6+3i\right)}{\left(-6\right)^{2}-3^{2}i^{2}}
Multiplikation kan omdannes til differensen mellem kvadrater ved hjælp af reglen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+5i\right)\left(-6+3i\right)}{45}
i^{2} er pr. definition -1. Beregn nævneren.
\frac{5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3i^{2}}{45}
Multiplicer komplekse tal 5+5i og -6+3i, som du multiplicerer binomialer.
\frac{5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3\left(-1\right)}{45}
i^{2} er pr. definition -1.
\frac{-30+15i-30i-15}{45}
Lav multiplikationerne i 5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3\left(-1\right).
\frac{-30-15+\left(15-30\right)i}{45}
Kombiner de reelle og imaginære dele i -30+15i-30i-15.
\frac{-45-15i}{45}
Lav additionerne i -30-15+\left(15-30\right)i.
-1-\frac{1}{3}i
Divider -45-15i med 45 for at få -1-\frac{1}{3}i.
Re(\frac{\left(5+5i\right)\left(-6+3i\right)}{\left(-6-3i\right)\left(-6+3i\right)})
Multiplicer både tælleren og nævneren af \frac{5+5i}{-6-3i} med nævnerens komplekse konjugation, -6+3i.
Re(\frac{\left(5+5i\right)\left(-6+3i\right)}{\left(-6\right)^{2}-3^{2}i^{2}})
Multiplikation kan omdannes til differensen mellem kvadrater ved hjælp af reglen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+5i\right)\left(-6+3i\right)}{45})
i^{2} er pr. definition -1. Beregn nævneren.
Re(\frac{5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3i^{2}}{45})
Multiplicer komplekse tal 5+5i og -6+3i, som du multiplicerer binomialer.
Re(\frac{5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3\left(-1\right)}{45})
i^{2} er pr. definition -1.
Re(\frac{-30+15i-30i-15}{45})
Lav multiplikationerne i 5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3\left(-1\right).
Re(\frac{-30-15+\left(15-30\right)i}{45})
Kombiner de reelle og imaginære dele i -30+15i-30i-15.
Re(\frac{-45-15i}{45})
Lav additionerne i -30-15+\left(15-30\right)i.
Re(-1-\frac{1}{3}i)
Divider -45-15i med 45 for at få -1-\frac{1}{3}i.
-1
Den reelle del af -1-\frac{1}{3}i er -1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}