Evaluer
-\frac{7}{5}+\frac{11}{5}i=-1,4+2,2i
Reel del
-\frac{7}{5} = -1\frac{2}{5} = -1,4
Aktie
Kopieret til udklipsholder
\frac{\left(3+5i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Multiplicer både tæller og nævner med nævnerens komplekse konjugation, 1+2i.
\frac{\left(3+5i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}}
Multiplikation kan omdannes til differensen mellem kvadrater ved hjælp af reglen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+5i\right)\left(1+2i\right)}{5}
i^{2} er pr. definition -1. Beregn nævneren.
\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2i^{2}}{5}
Multiplicer komplekse tal 3+5i og 1+2i, som du multiplicerer binomialer.
\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right)}{5}
i^{2} er pr. definition -1.
\frac{3+6i+5i-10}{5}
Lav multiplikationerne i 3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right).
\frac{3-10+\left(6+5\right)i}{5}
Kombiner de reelle og imaginære dele i 3+6i+5i-10.
\frac{-7+11i}{5}
Lav additionerne i 3-10+\left(6+5\right)i.
-\frac{7}{5}+\frac{11}{5}i
Divider -7+11i med 5 for at få -\frac{7}{5}+\frac{11}{5}i.
Re(\frac{\left(3+5i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Multiplicer både tælleren og nævneren af \frac{3+5i}{1-2i} med nævnerens komplekse konjugation, 1+2i.
Re(\frac{\left(3+5i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}})
Multiplikation kan omdannes til differensen mellem kvadrater ved hjælp af reglen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+5i\right)\left(1+2i\right)}{5})
i^{2} er pr. definition -1. Beregn nævneren.
Re(\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2i^{2}}{5})
Multiplicer komplekse tal 3+5i og 1+2i, som du multiplicerer binomialer.
Re(\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right)}{5})
i^{2} er pr. definition -1.
Re(\frac{3+6i+5i-10}{5})
Lav multiplikationerne i 3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right).
Re(\frac{3-10+\left(6+5\right)i}{5})
Kombiner de reelle og imaginære dele i 3+6i+5i-10.
Re(\frac{-7+11i}{5})
Lav additionerne i 3-10+\left(6+5\right)i.
Re(-\frac{7}{5}+\frac{11}{5}i)
Divider -7+11i med 5 for at få -\frac{7}{5}+\frac{11}{5}i.
-\frac{7}{5}
Den reelle del af -\frac{7}{5}+\frac{11}{5}i er -\frac{7}{5}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}