Spring videre til hovedindholdet
Evaluer
Tick mark Image
Differentier w.r.t. x
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{2x^{2}y^{2}}{4x^{2}+2401\times 3x^{-3}}
Beregn 7 til potensen af 4, og få 2401.
\frac{2x^{2}y^{2}}{4x^{2}+7203x^{-3}}
Multiplicer 2401 og 3 for at få 7203.
\frac{2x^{2}y^{2}}{x^{-3}\left(4x^{5}+7203\right)}
Faktoriser de udtryk, der ikke allerede er faktoriseret.
\frac{2y^{2}x^{5}}{4x^{5}+7203}
Hvis du vil dividere potenserne for samme base, skal du subtrahere nævnerens eksponent fra tællerens eksponent.
\frac{\left(4x^{2}+7203x^{-3}\right)\frac{\mathrm{d}}{\mathrm{d}x}(2y^{2}x^{2})-2y^{2}x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{2}+7203x^{-3})}{\left(4x^{2}+7203x^{-3}\right)^{2}}
For to vilkårlige differentiable funktioner er afledningen af kvotienten for to funktioner lig med nævneren gange afledningen af tælleren minus tælleren gange afledningen af nævneren, alle sammen divideret med kvadratet af nævneren.
\frac{\left(4x^{2}+7203x^{-3}\right)\times 2\times 2y^{2}x^{2-1}-2y^{2}x^{2}\left(2\times 4x^{2-1}-3\times 7203x^{-3-1}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Afledningen af en polynomisk værdi er summen af afledningerne af dens udtryk. Afledningen af et hvilket som helst konstant udtryk er 0. Afledningen af ax^{n} er nax^{n-1}.
\frac{\left(4x^{2}+7203x^{-3}\right)\times 4y^{2}x^{1}-2y^{2}x^{2}\left(8x^{1}-21609x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Forenkling.
\frac{4x^{2}\times 4y^{2}x^{1}+7203x^{-3}\times 4y^{2}x^{1}-2y^{2}x^{2}\left(8x^{1}-21609x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Multiplicer 4x^{2}+7203x^{-3} gange 4y^{2}x^{1}.
\frac{4x^{2}\times 4y^{2}x^{1}+7203x^{-3}\times 4y^{2}x^{1}-\left(2y^{2}x^{2}\times 8x^{1}+2y^{2}x^{2}\left(-21609\right)x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Multiplicer 2y^{2}x^{2} gange 8x^{1}-21609x^{-4}.
\frac{4\times 4y^{2}x^{2+1}+7203\times 4y^{2}x^{-3+1}-\left(2y^{2}\times 8x^{2+1}+2y^{2}\left(-21609\right)x^{2-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Hvis du vil multiplicere potenser for samme base, skal du addere deres eksponenter.
\frac{16y^{2}x^{3}+28812y^{2}x^{-2}-\left(16y^{2}x^{3}+\left(-43218y^{2}\right)x^{-2}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Forenkling.
\frac{72030y^{2}x^{-2}}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Kombiner ens led.