Evaluer
-\frac{2c^{3}}{3}-\frac{c^{2}}{3}+c
Udvid
-\frac{2c^{3}}{3}-\frac{c^{2}}{3}+c
Aktie
Kopieret til udklipsholder
\frac{2c+3}{3}c\left(1-c\right)
Divider hvert led på 2-2c med 2 for at få 1-c.
\frac{\left(2c+3\right)c}{3}\left(1-c\right)
Udtryk \frac{2c+3}{3}c som en enkelt brøk.
\frac{\left(2c+3\right)c\left(1-c\right)}{3}
Udtryk \frac{\left(2c+3\right)c}{3}\left(1-c\right) som en enkelt brøk.
\frac{\left(2c^{2}+3c\right)\left(1-c\right)}{3}
Brug fordelingsegenskaben til at multiplicere 2c+3 med c.
\frac{2c^{2}-2c^{3}+3c-3c^{2}}{3}
Anvend fordelingsegenskaben ved at gange hvert led i 2c^{2}+3c med hvert led i 1-c.
\frac{-c^{2}-2c^{3}+3c}{3}
Kombiner 2c^{2} og -3c^{2} for at få -c^{2}.
\frac{2c+3}{3}c\left(1-c\right)
Divider hvert led på 2-2c med 2 for at få 1-c.
\frac{\left(2c+3\right)c}{3}\left(1-c\right)
Udtryk \frac{2c+3}{3}c som en enkelt brøk.
\frac{\left(2c+3\right)c\left(1-c\right)}{3}
Udtryk \frac{\left(2c+3\right)c}{3}\left(1-c\right) som en enkelt brøk.
\frac{\left(2c^{2}+3c\right)\left(1-c\right)}{3}
Brug fordelingsegenskaben til at multiplicere 2c+3 med c.
\frac{2c^{2}-2c^{3}+3c-3c^{2}}{3}
Anvend fordelingsegenskaben ved at gange hvert led i 2c^{2}+3c med hvert led i 1-c.
\frac{-c^{2}-2c^{3}+3c}{3}
Kombiner 2c^{2} og -3c^{2} for at få -c^{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}