Løs for R
R=100
Quiz
Linear Equation
5 problemer svarende til:
\frac { 2 } { R } = \frac { 1 } { 25 } - \frac { 1 } { 50 }
Aktie
Kopieret til udklipsholder
50\times 2=50R\times \frac{1}{25}+50R\left(-\frac{1}{50}\right)
Variablen R må ikke være lig med 0, fordi division med nul ikke er defineret. Gang begge sider af ligningen med 50R, det mindste fælles multiplum af R,25,50.
100=50R\times \frac{1}{25}+50R\left(-\frac{1}{50}\right)
Multiplicer 50 og 2 for at få 100.
100=\frac{50}{25}R+50R\left(-\frac{1}{50}\right)
Multiplicer 50 og \frac{1}{25} for at få \frac{50}{25}.
100=2R+50R\left(-\frac{1}{50}\right)
Divider 50 med 25 for at få 2.
100=2R-R
Udlign 50 og 50.
100=R
Kombiner 2R og -R for at få R.
R=100
Skift side, så alle variable led er placeret på venstre side.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}