Løs for x
x = \frac{30}{13} = 2\frac{4}{13} \approx 2,307692308
Graf
Aktie
Kopieret til udklipsholder
4\times 15+x\times 14=40x
Variablen x må ikke være lig med 0, fordi division med nul ikke er defineret. Gang begge sider af ligningen med 4x, det mindste fælles multiplum af x,4.
60+x\times 14=40x
Multiplicer 4 og 15 for at få 60.
60+x\times 14-40x=0
Subtraher 40x fra begge sider.
60-26x=0
Kombiner x\times 14 og -40x for at få -26x.
-26x=-60
Subtraher 60 fra begge sider. Ethvert tal trukket fra nul giver tallets negation.
x=\frac{-60}{-26}
Divider begge sider med -26.
x=\frac{30}{13}
Reducer fraktionen \frac{-60}{-26} til de laveste led ved at udtrække og annullere -2.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}