Spring videre til hovedindholdet
Evaluer
Tick mark Image
Differentier w.r.t. x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{\left(x-1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Faktoriser x^{2}-1. Faktoriser x^{2}+3x-4.
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for \left(x-1\right)\left(x+1\right) og \left(x-1\right)\left(x+4\right) er \left(x-1\right)\left(x+1\right)\left(x+4\right). Multiplicer \frac{1}{\left(x-1\right)\left(x+1\right)} gange \frac{x+4}{x+4}. Multiplicer \frac{2}{\left(x-1\right)\left(x+4\right)} gange \frac{x+1}{x+1}.
\frac{x+4-2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Eftersom \frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} og \frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{x+4-2x-2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Lav multiplikationerne i x+4-2\left(x+1\right).
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Kombiner ens led i x+4-2x-2.
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x-3\right)\left(x+1\right)}
Faktoriser x^{2}-2x-3.
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Mindste fælles multiplum for \left(x-1\right)\left(x+1\right)\left(x+4\right) og \left(x-3\right)\left(x+1\right) er \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right). Multiplicer \frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} gange \frac{x-3}{x-3}. Multiplicer \frac{1}{\left(x-3\right)\left(x+1\right)} gange \frac{\left(x-1\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}.
\frac{\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Da \frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} og \frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} har den samme fællesnævner, skal du addere dem ved at tilføje deres tællere.
\frac{-x^{2}+3x+2x-6+x^{2}+4x-x-4}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Lav multiplikationerne i \left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right).
\frac{8x-10}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Kombiner ens led i -x^{2}+3x+2x-6+x^{2}+4x-x-4.
\frac{8x-10}{x^{4}+x^{3}-13x^{2}-x+12}
Udvid \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right).