Spring videre til hovedindholdet
Løs for h
Tick mark Image
Løs for x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

-1=\frac{1}{2}x\times 4h+4h\left(-2\right)
Variablen h må ikke være lig med 0, fordi division med nul ikke er defineret. Gang begge sider af ligningen med 4h, det mindste fælles multiplum af h\left(-4\right),2.
-1=2xh+4h\left(-2\right)
Multiplicer \frac{1}{2} og 4 for at få 2.
-1=2xh-8h
Multiplicer 4 og -2 for at få -8.
2xh-8h=-1
Skift side, så alle variable led er placeret på venstre side.
\left(2x-8\right)h=-1
Kombiner alle led med h.
\frac{\left(2x-8\right)h}{2x-8}=-\frac{1}{2x-8}
Divider begge sider med 2x-8.
h=-\frac{1}{2x-8}
Division med 2x-8 annullerer multiplikationen med 2x-8.
h=-\frac{1}{2\left(x-4\right)}
Divider -1 med 2x-8.
h=-\frac{1}{2\left(x-4\right)}\text{, }h\neq 0
Variablen h må ikke være lig med 0.
-1=\frac{1}{2}x\times 4h+4h\left(-2\right)
Gang begge sider af ligningen med 4h, det mindste fælles multiplum af h\left(-4\right),2.
-1=2xh+4h\left(-2\right)
Multiplicer \frac{1}{2} og 4 for at få 2.
-1=2xh-8h
Multiplicer 4 og -2 for at få -8.
2xh-8h=-1
Skift side, så alle variable led er placeret på venstre side.
2xh=-1+8h
Tilføj 8h på begge sider.
2hx=8h-1
Ligningen er nu i standardform.
\frac{2hx}{2h}=\frac{8h-1}{2h}
Divider begge sider med 2h.
x=\frac{8h-1}{2h}
Division med 2h annullerer multiplikationen med 2h.
x=4-\frac{1}{2h}
Divider -1+8h med 2h.