Løs for m
m=\frac{3}{2\left(3x+\pi \right)}
x\neq -\frac{\pi }{3}
Løs for x
x=-\frac{\pi }{3}+\frac{1}{2m}
m\neq 0
Graf
Aktie
Kopieret til udklipsholder
3-6xm=2\pi m
Gang begge sider af ligningen med 6, det mindste fælles multiplum af 2,3.
3-6xm-2\pi m=0
Subtraher 2\pi m fra begge sider.
-6xm-2\pi m=-3
Subtraher 3 fra begge sider. Ethvert tal trukket fra nul giver tallets negation.
\left(-6x-2\pi \right)m=-3
Kombiner alle led med m.
\frac{\left(-6x-2\pi \right)m}{-6x-2\pi }=-\frac{3}{-6x-2\pi }
Divider begge sider med -6x-2\pi .
m=-\frac{3}{-6x-2\pi }
Division med -6x-2\pi annullerer multiplikationen med -6x-2\pi .
m=\frac{3}{2\left(3x+\pi \right)}
Divider -3 med -6x-2\pi .
3-6xm=2\pi m
Gang begge sider af ligningen med 6, det mindste fælles multiplum af 2,3.
-6xm=2\pi m-3
Subtraher 3 fra begge sider.
\left(-6m\right)x=2\pi m-3
Ligningen er nu i standardform.
\frac{\left(-6m\right)x}{-6m}=\frac{2\pi m-3}{-6m}
Divider begge sider med -6m.
x=\frac{2\pi m-3}{-6m}
Division med -6m annullerer multiplikationen med -6m.
x=-\frac{\pi }{3}+\frac{1}{2m}
Divider 2\pi m-3 med -6m.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}