Evaluer
\frac{1}{81}\approx 0,012345679
Faktoriser
\frac{1}{3 ^ {4}} = 0,012345679012345678
Aktie
Kopieret til udklipsholder
\frac{3^{-2}\left(x^{-1}\right)^{-2}\left(y^{-2}\right)^{-2}}{\left(3xy^{2}\right)^{2}}
Udvid \left(3x^{-1}y^{-2}\right)^{-2}.
\frac{3^{-2}x^{2}\left(y^{-2}\right)^{-2}}{\left(3xy^{2}\right)^{2}}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang -1 og -2 for at få 2.
\frac{3^{-2}x^{2}y^{4}}{\left(3xy^{2}\right)^{2}}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang -2 og -2 for at få 4.
\frac{\frac{1}{9}x^{2}y^{4}}{\left(3xy^{2}\right)^{2}}
Beregn 3 til potensen af -2, og få \frac{1}{9}.
\frac{\frac{1}{9}x^{2}y^{4}}{3^{2}x^{2}\left(y^{2}\right)^{2}}
Udvid \left(3xy^{2}\right)^{2}.
\frac{\frac{1}{9}x^{2}y^{4}}{3^{2}x^{2}y^{4}}
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
\frac{\frac{1}{9}x^{2}y^{4}}{9x^{2}y^{4}}
Beregn 3 til potensen af 2, og få 9.
\frac{\frac{1}{9}}{9}
Udlign x^{2}y^{4} i både tælleren og nævneren.
\frac{1}{9\times 9}
Udtryk \frac{\frac{1}{9}}{9} som en enkelt brøk.
\frac{1}{81}
Multiplicer 9 og 9 for at få 81.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}