Spring videre til hovedindholdet
Differentier w.r.t. α
Tick mark Image
Evaluer
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{\mathrm{d}}{\mathrm{d}\alpha }(\cos(\alpha ))=\left(\lim_{h\to 0}\frac{\cos(\alpha +h)-\cos(\alpha )}{h}\right)
For en funktion f\left(x\right) er afledningen lig med grænsen på \frac{f\left(x+h\right)-f\left(x\right)}{h} med h gående mod 0, hvis denne grænse findes.
\lim_{h\to 0}\frac{\cos(h+\alpha )-\cos(\alpha )}{h}
Brug sumformlen for cosinus.
\lim_{h\to 0}\frac{\cos(\alpha )\left(\cos(h)-1\right)-\sin(\alpha )\sin(h)}{h}
Udfaktoriser \cos(\alpha ).
\left(\lim_{h\to 0}\cos(\alpha )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(\alpha )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Omskriv grænsen.
\cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Brug det faktum, at \alpha er en konstant, når der beregnes grænser med h gående mod 0.
\cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha )
Grænsen \lim_{\alpha \to 0}\frac{\sin(\alpha )}{\alpha } er 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Hvis du vil evaluere grænsen \lim_{h\to 0}\frac{\cos(h)-1}{h}, skal du først multiplicere tælleren og nævneren med \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Multiplicer \cos(h)+1 gange \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Brug Pythagoras-identiteten.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Omskriv grænsen.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Grænsen \lim_{\alpha \to 0}\frac{\sin(\alpha )}{\alpha } er 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Brug det faktum, at \frac{\sin(h)}{\cos(h)+1} er kontinuerlig ved 0.
-\sin(\alpha )
Substituer værdien 0 i udtrykket \cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha ).