Løs for α
\alpha =\frac{1}{\beta }
\beta \neq 0
Løs for β
\beta =\frac{1}{\alpha }
\alpha \neq 0
Aktie
Kopieret til udklipsholder
\alpha ^{2}+\beta ^{2}=\alpha ^{2}+2\alpha \beta +\beta ^{2}-2
Brug binomialsætningen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til at udvide \left(\alpha +\beta \right)^{2}.
\alpha ^{2}+\beta ^{2}-\alpha ^{2}=2\alpha \beta +\beta ^{2}-2
Subtraher \alpha ^{2} fra begge sider.
\beta ^{2}=2\alpha \beta +\beta ^{2}-2
Kombiner \alpha ^{2} og -\alpha ^{2} for at få 0.
2\alpha \beta +\beta ^{2}-2=\beta ^{2}
Skift side, så alle variable led er placeret på venstre side.
2\alpha \beta -2=\beta ^{2}-\beta ^{2}
Subtraher \beta ^{2} fra begge sider.
2\alpha \beta -2=0
Kombiner \beta ^{2} og -\beta ^{2} for at få 0.
2\alpha \beta =2
Tilføj 2 på begge sider. Ethvert tal plus nul giver tallet selv.
2\beta \alpha =2
Ligningen er nu i standardform.
\frac{2\beta \alpha }{2\beta }=\frac{2}{2\beta }
Divider begge sider med 2\beta .
\alpha =\frac{2}{2\beta }
Division med 2\beta annullerer multiplikationen med 2\beta .
\alpha =\frac{1}{\beta }
Divider 2 med 2\beta .
\alpha ^{2}+\beta ^{2}=\alpha ^{2}+2\alpha \beta +\beta ^{2}-2
Brug binomialsætningen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til at udvide \left(\alpha +\beta \right)^{2}.
\alpha ^{2}+\beta ^{2}-2\alpha \beta =\alpha ^{2}+\beta ^{2}-2
Subtraher 2\alpha \beta fra begge sider.
\alpha ^{2}+\beta ^{2}-2\alpha \beta -\beta ^{2}=\alpha ^{2}-2
Subtraher \beta ^{2} fra begge sider.
\alpha ^{2}-2\alpha \beta =\alpha ^{2}-2
Kombiner \beta ^{2} og -\beta ^{2} for at få 0.
-2\alpha \beta =\alpha ^{2}-2-\alpha ^{2}
Subtraher \alpha ^{2} fra begge sider.
-2\alpha \beta =-2
Kombiner \alpha ^{2} og -\alpha ^{2} for at få 0.
\left(-2\alpha \right)\beta =-2
Ligningen er nu i standardform.
\frac{\left(-2\alpha \right)\beta }{-2\alpha }=-\frac{2}{-2\alpha }
Divider begge sider med -2\alpha .
\beta =-\frac{2}{-2\alpha }
Division med -2\alpha annullerer multiplikationen med -2\alpha .
\beta =\frac{1}{\alpha }
Divider -2 med -2\alpha .
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}