Spring videre til hovedindholdet
Evaluer
Tick mark Image
Faktoriser
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{\left(\frac{\left(\left(1-\frac{3}{8}+\frac{4}{5}-\frac{11}{20}\right)\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Divider 2 med 2 for at få 1.
\frac{\left(\frac{\left(\left(\frac{5}{8}+\frac{4}{5}-\frac{11}{20}\right)\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Subtraher \frac{3}{8} fra 1 for at få \frac{5}{8}.
\frac{\left(\frac{\left(\left(\frac{57}{40}-\frac{11}{20}\right)\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tilføj \frac{5}{8} og \frac{4}{5} for at få \frac{57}{40}.
\frac{\left(\frac{\left(\frac{7}{8}\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Subtraher \frac{11}{20} fra \frac{57}{40} for at få \frac{7}{8}.
\frac{\left(\frac{\left(\frac{7}{8}\left(\frac{13}{14}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tilføj \frac{3}{14} og \frac{5}{7} for at få \frac{13}{14}.
\frac{\left(\frac{\left(\frac{7}{8}\left(-\frac{1}{14}+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Subtraher 1 fra \frac{13}{14} for at få -\frac{1}{14}.
\frac{\left(\frac{\left(\frac{7}{8}\times \frac{10}{7}\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tilføj -\frac{1}{14} og \frac{3}{2} for at få \frac{10}{7}.
\frac{\left(\frac{\left(\frac{5}{4}\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Multiplicer \frac{7}{8} og \frac{10}{7} for at få \frac{5}{4}.
\frac{\left(\frac{\frac{25}{16}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Beregn \frac{5}{4} til potensen af 2, og få \frac{25}{16}.
\frac{\left(\frac{\frac{25}{16}}{\left(-1+\frac{1}{2}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Reducer fraktionen \frac{2}{4} til de laveste led ved at udtrække og annullere 2.
\frac{\left(\frac{\frac{25}{16}}{\left(-\frac{1}{2}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tilføj -1 og \frac{1}{2} for at få -\frac{1}{2}.
\frac{\left(\frac{\frac{25}{16}}{\frac{1}{4}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Beregn -\frac{1}{2} til potensen af 2, og få \frac{1}{4}.
\frac{\left(\frac{25}{16}\times 4\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Divider \frac{25}{16} med \frac{1}{4} ved at multiplicere \frac{25}{16} med den reciprokke værdi af \frac{1}{4}.
\frac{\left(\frac{25}{4}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Multiplicer \frac{25}{16} og 4 for at få \frac{25}{4}.
\frac{\frac{625}{16}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Beregn \frac{25}{4} til potensen af 2, og få \frac{625}{16}.
\frac{\frac{625}{16}}{\left(\frac{4}{3}-\frac{1}{12}\right)^{2}}
Tilføj \frac{5}{6} og \frac{1}{2} for at få \frac{4}{3}.
\frac{\frac{625}{16}}{\left(\frac{5}{4}\right)^{2}}
Subtraher \frac{1}{12} fra \frac{4}{3} for at få \frac{5}{4}.
\frac{\frac{625}{16}}{\frac{25}{16}}
Beregn \frac{5}{4} til potensen af 2, og få \frac{25}{16}.
\frac{625}{16}\times \frac{16}{25}
Divider \frac{625}{16} med \frac{25}{16} ved at multiplicere \frac{625}{16} med den reciprokke værdi af \frac{25}{16}.
25
Multiplicer \frac{625}{16} og \frac{16}{25} for at få 25.