Neidio i'r prif gynnwys
Microsoft
|
Math Solver
Datrys
Ymarfer
Chwarae
Pynciau
Cyn-Algebra
Golygu
Modd
Ffactor Cyffredin Mwyaf
Lleiaf Cyffredin Lluosog
Urdd Gweithrediadau
Ffracsiynau
Ffracsiynau Cymysg
Prif Ffactorization
Dehonglwyr
Radicaliaid
Algebra
Cyfuno fel termau
Datrys ar gyfer Newidyn
Ffactor
Ehangu
Gwerthuso ffracsiynau
Hafaliadau llinol
Hafaliadau cwadratig
Anghydraddoldebau
Systemau Hafaliadau
Matricsau
Trigonometreg
Symleiddio
Gwerthuso
Graffiau
Datrys Hafaliadau
Calculus
Deilliadau
Integrynnau
Terfynau
Mewnbynnau algebra
Mewnbynnau trigonometreg
Mewnbynnau Calculus
Mewnbynnau Matrics
Datrys
Ymarfer
Chwarae
Pynciau
Cyn-Algebra
Golygu
Modd
Ffactor Cyffredin Mwyaf
Lleiaf Cyffredin Lluosog
Urdd Gweithrediadau
Ffracsiynau
Ffracsiynau Cymysg
Prif Ffactorization
Dehonglwyr
Radicaliaid
Algebra
Cyfuno fel termau
Datrys ar gyfer Newidyn
Ffactor
Ehangu
Gwerthuso ffracsiynau
Hafaliadau llinol
Hafaliadau cwadratig
Anghydraddoldebau
Systemau Hafaliadau
Matricsau
Trigonometreg
Symleiddio
Gwerthuso
Graffiau
Datrys Hafaliadau
Calculus
Deilliadau
Integrynnau
Terfynau
Mewnbynnau algebra
Mewnbynnau trigonometreg
Mewnbynnau Calculus
Mewnbynnau Matrics
3
!
3
a
4
!
Sylfaenol
algebra
trigonometreg
Calculus
ystadegau
matricsau
Cymeriadau
Enrhifo
3a^{2}
3
a
2
Gwahaniaethu w.r.t. a
6a
6
a
Cwis
Algebra
\sqrt{3} \times \sqrt{3a^4}
3
×
3
a
4
Problemau tebyg o chwiliad gwe
Simplify? \displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}}
Simplify?
8
×
4
8
3
https://socratic.org/questions/59e559a97c01496bf2104ce3
\displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}}={384}\sqrt{{6}} Explanation: \displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}} Because both terms are under a square root sign, we can ...
8
×
4
8
3
=
3
8
4
6
Explanation:
8
×
4
8
3
Because both terms are under a square root sign, we can ...
How do you simplify \displaystyle{5}\sqrt{{{9}{t}^{{2}}}}\times{5}\sqrt{{{2}{t}}} ?
How do you simplify
5
9
t
2
×
5
2
t
?
https://socratic.org/questions/how-do-you-simplify-5sqrt-9t-2-times5-sqrt-2t
See a solution process below: Explanation: First, simplify the radical on the left: \displaystyle{\left({5}\times{3}{t}\right)}\times{5}\sqrt{{{2}{t}}}\Rightarrow \displaystyle{15}{t}\times{5}\sqrt{{{2}{t}}}\Rightarrow ...
See a solution process below: Explanation: First, simplify the radical on the left:
(
5
×
3
t
)
×
5
2
t
⇒
1
5
t
×
5
2
t
⇒
...
How do you simplify \displaystyle{3}\sqrt{{{5}{c}}}\times\sqrt{{15}}^{{3}} ?
How do you simplify
3
5
c
×
1
5
3
?
https://socratic.org/questions/how-do-you-simplify-3sqrt-5c-times-sqrt15-3
\displaystyle{225}\sqrt{{{3}{c}}} Explanation: \displaystyle{3}\sqrt{{{5}{c}}}\sqrt{{{15}}}^{{3}} First, we can simplify \displaystyle\sqrt{{{15}}}^{{3}} . \displaystyle\sqrt{{{15}}}^{{3}}=\sqrt{{15}}\cdot\sqrt{{15}}\cdot\sqrt{{15}}={15}\cdot\sqrt{{15}} ...
2
2
5
3
c
Explanation:
3
5
c
1
5
3
First, we can simplify
1
5
3
.
1
5
3
=
1
5
⋅
1
5
⋅
1
5
=
1
5
⋅
1
5
...
Simplifying indices with surds
Simplifying indices with surds
https://math.stackexchange.com/questions/1986172/simplifying-indices-with-surds
One way is to note that \left( \sqrt t \right)^3=t^{\frac 32} and similarly for the other one. Then when you multiply terms you add exponents
One way is to note that
(
t
)
3
=
t
2
3
and similarly for the other one. Then when you multiply terms you add exponents
range of m such that the equation |x^2-3x+2|=mx has 4 real answers.
range of
m
such that the equation
∣
x
2
−
3
x
+
2
∣
=
m
x
has 4 real answers.
https://math.stackexchange.com/questions/1259271/range-of-m-such-that-the-equation-x2-3x2-mx-has-4-real-answers
There is some positive value m such that y=mx is tangent to y=-(x^2-3x+2). This value must make 0 the discriminant of the equation x^2-3x+2=-mx That is, m^2-6m+1=0 The least root of ...
There is some positive value
m
such that
y
=
m
x
is tangent to
y
=
−
(
x
2
−
3
x
+
2
)
. This value must make
0
the discriminant of the equation
x
2
−
3
x
+
2
=
−
m
x
That is,
m
2
−
6
m
+
1
=
0
The least root of ...
Prove that there exists irrational numbers p and q such that p^{q} is rational
Prove that there exists irrational numbers p and q such that
p
q
is rational
https://math.stackexchange.com/q/2883337
The irrationality of \sqrt 2^{\sqrt 2} (in fact, its transcendence) follows immediately from the Gelfond Schneider Theorem . This was the issue that motivated Hilbert's 7^{th} Problem. The ...
The irrationality of
2
2
(in fact, its transcendence) follows immediately from the Gelfond Schneider Theorem . This was the issue that motivated Hilbert's
7
t
h
Problem. The ...
Mwy Eitemau
Rhannu
Copi
Copïo i clipfwrdd
Problemau tebyg
\sqrt{40}
4
0
\sqrt{99a^3}
9
9
a
3
\sqrt{\frac{16}{25}}
2
5
1
6
\sqrt{3} \times \sqrt{3a^4}
3
×
3
a
4
\sqrt{\sqrt{256a^8}}
2
5
6
a
8
\sqrt{196}
1
9
6
Yn ôl i'r brig