Neidio i'r prif gynnwys
Microsoft
|
Math Solver
Datrys
Ymarfer
Chwarae
Pynciau
Cyn-Algebra
Golygu
Modd
Ffactor Cyffredin Mwyaf
Lleiaf Cyffredin Lluosog
Urdd Gweithrediadau
Ffracsiynau
Ffracsiynau Cymysg
Prif Ffactorization
Dehonglwyr
Radicaliaid
Algebra
Cyfuno fel termau
Datrys ar gyfer Newidyn
Ffactor
Ehangu
Gwerthuso ffracsiynau
Hafaliadau llinol
Hafaliadau cwadratig
Anghydraddoldebau
Systemau Hafaliadau
Matricsau
Trigonometreg
Symleiddio
Gwerthuso
Graffiau
Datrys Hafaliadau
Calculus
Deilliadau
Integrynnau
Terfynau
Mewnbynnau algebra
Mewnbynnau trigonometreg
Mewnbynnau Calculus
Mewnbynnau Matrics
Datrys
Ymarfer
Chwarae
Pynciau
Cyn-Algebra
Golygu
Modd
Ffactor Cyffredin Mwyaf
Lleiaf Cyffredin Lluosog
Urdd Gweithrediadau
Ffracsiynau
Ffracsiynau Cymysg
Prif Ffactorization
Dehonglwyr
Radicaliaid
Algebra
Cyfuno fel termau
Datrys ar gyfer Newidyn
Ffactor
Ehangu
Gwerthuso ffracsiynau
Hafaliadau llinol
Hafaliadau cwadratig
Anghydraddoldebau
Systemau Hafaliadau
Matricsau
Trigonometreg
Symleiddio
Gwerthuso
Graffiau
Datrys Hafaliadau
Calculus
Deilliadau
Integrynnau
Terfynau
Mewnbynnau algebra
Mewnbynnau trigonometreg
Mewnbynnau Calculus
Mewnbynnau Matrics
Sylfaenol
algebra
trigonometreg
Calculus
ystadegau
matricsau
Cymeriadau
mode(2,4,5,3,2,4,5,6,4,3,2)
Enrhifo
2,4
Cwis
5 problemau tebyg i:
mode(2,4,5,3,2,4,5,6,4,3,2)
Problemau tebyg o chwiliad gwe
mn+1 \equiv 0 \pmod{24} then : m+n \equiv 0 \pmod{24} using group theory
https://math.stackexchange.com/questions/2350421/mn1-equiv-0-pmod24-then-mn-equiv-0-pmod24-using-group-theory
You're trying to prove that if mn \equiv -1 \pmod{24} then m \equiv -n \pmod{24}. Let k = -n. Then you're trying to show that if -mk \equiv -1 \pmod{24} then m \equiv k \pmod{24}. Of ...
Can we ever have \Gamma \models \perp
https://math.stackexchange.com/questions/2639449/can-we-ever-have-gamma-models-perp
That's exactly right: "\Gamma\models\perp" is equivalent to "\Gamma has no model" (or "\Gamma is unsatisfiable").
Is this proof about Mersenne numbers acceptable?
https://math.stackexchange.com/questions/86429/is-this-proof-about-mersenne-numbers-acceptable
There is nothing incorrect, but there are a few things that could be changed. We only need p>2. From 2^p \equiv 2 \pmod {p} one should conclude M_p=2^p -1\equiv 1 \pmod{p} immediately, without ...
Solving system of linear congruence equations
https://math.stackexchange.com/questions/473711/solving-system-of-linear-congruence-equations
The way you express your congruences is rather unconventional. Given that 23d\equiv1\pmod{40}, 73d\equiv1\pmod{102}, and that 40=2^3\times5 and 102=2\times3\times17, it follows that 23d\equiv1\pmod5, ...
How to prove an element of a given structure is not definable?
https://math.stackexchange.com/questions/927915/how-to-prove-an-element-of-a-given-structure-is-not-definable
HINT: If x is a definable element in a structure \mathcal M, then any automorphism of \cal M must satisfy f(x)=x. To show that 2 is not definable, find an automorphism of \cal A such that ...
The deduction theorem according to AIMA
https://math.stackexchange.com/questions/13251/the-deduction-theorem-according-to-aima
In order for \alpha\Rightarrow\beta to be valid, it must hold in all models; for \alpha\Rightarrow\beta to not be valid, there must be a model where it is false. If there is a model where it is ...
Mwy Eitemau
Rhannu
Copi
Copïo i clipfwrdd
Problemau tebyg
mode(1,2,3,2,1,2,3)
mode(1,2,3)
mode(20,34,32,35,45,32,45,32,32)
mode(2,4,5,3,2,4,5,6,4,3,2)
mode(10,11,10,12)
mode(1,1,2,2,3,3)
Yn ôl i'r brig