Ves al contingut principal
Microsoft
|
Math Solver
Resoldre
Pràctica
Jugar
Temes
Preàlgebra
Significar
Moda
Factor comú més gran
Múltiple menys comú
Ordre d'operacions
Fraccions
Fraccions mixtes
Factorització primera:
Exponents
Radicals lliures
Àlgebra
Combina termes semblants
Resoldre per a una variable
Factor
Expandir
Avaluar fraccions
Equacions lineals
Equacions quadràtiques
Desigualtats
Sistemes d'equacions
Matrius
Trigonometria
Simplificar
Avaluar
Gràfics
Resoldre equacions
Càlcul
Derivats
Integrals
Límits
Entrades d'àlgebra
Entrades de trigonometria
Entrades de càlcul
Entrades matricials
Resoldre
Pràctica
Jugar
Temes
Preàlgebra
Significar
Moda
Factor comú més gran
Múltiple menys comú
Ordre d'operacions
Fraccions
Fraccions mixtes
Factorització primera:
Exponents
Radicals lliures
Àlgebra
Combina termes semblants
Resoldre per a una variable
Factor
Expandir
Avaluar fraccions
Equacions lineals
Equacions quadràtiques
Desigualtats
Sistemes d'equacions
Matrius
Trigonometria
Simplificar
Avaluar
Gràfics
Resoldre equacions
Càlcul
Derivats
Integrals
Límits
Entrades d'àlgebra
Entrades de trigonometria
Entrades de càlcul
Entrades matricials
Bàsic
àlgebra
trigonometria
càlcul
estadística
Matrius
Caràcters
Resoleu x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Gràfic
Traceu els dos costats en 2D
Traceu en 2D
Prova
Trigonometry
\sin ( x ) = \cos ( x )
Problemes similars de la cerca web
How to solve equations like 2 \sin(x) = \cos(x)
https://math.stackexchange.com/questions/1476944/how-to-solve-equations-like-2-sinx-cosx/1476973
One way can be using tan\frac x2=t so sin x=\frac{2t}{1+t^2} and cos x=\frac{1-t^2}{1+t^2}. Here 2sin x= cos x implies t^2+4t-1=0 from wich tan \frac x2=2\pm\sqrt{5}.Hence the answer of ...
How do you show that the equation \displaystyle{1}-{\sin{{x}}}={\cos{{x}}} is not an identity?
https://socratic.org/questions/how-do-you-show-that-the-equation-1-sinx-cosx-is-not-an-identity
Bdub Nov 12, 2016 Pick a value for x like \displaystyle\frac{\pi}{{3}} and plug it in to both side to show that they don't equal each other and therefore not an identity
How do you solve \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}} ?
https://socratic.org/questions/how-do-you-solve-1-sin-x-cos-x
\displaystyle{x}={0} Explanation: \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}{\quad\text{or}\quad}{\cos{{x}}}-{\sin{{x}}}={1} . Squaring both sides we get \displaystyle{\left({\cos{{x}}}-{\sin{{x}}}\right)}^{{2}}={1}{\quad\text{or}\quad}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}-{2}{\sin{{x}}}{\cos{{x}}}={1}{\quad\text{or}\quad}{1}-{\sin{{2}}}{x}={1}{\quad\text{or}\quad}{\sin{{2}}}{x}={0}={\sin{{0}}}; ...
Trigonometric equation \sin2x=\cos x
https://math.stackexchange.com/questions/3008492/trigonometric-equation-sin2x-cos-x
As @Nicholas Stull hinted, you lost solutions by not making sure that you were not dividing by zero. As @Winther pointed out, you can avoid this error by factoring. As @Nicholas Stull pointed out, ...
Is there a deeper understanding of the derivative of sin(x) = cos(x)?
https://math.stackexchange.com/q/2454114
Apropos "deeper way": 1) f(x) = f(-x), even fct. Examples: y=x^2, y=cos(x) f'(x) = -f'(-x), chain rule, odd fct. 2) f(x)=-f(-x), odd fct. Examples: y=x^3, y=sin(x). f'(x) = f'(-x), ...
Maximum area of a rectangle inscribed in the cos(x) function
https://math.stackexchange.com/q/2212333
Equations like x= \cos x or x=\cot x generally don't have algebraic solutions. As such, we would first want to note that such an x exists (e.g., by the Intermediate Value Theorem) and then use ...
Més Elements
Compartir
Copiar
Copiat al porta-retalls
Problemes similars
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )
Tornar a l'inici