Ves al contingut principal
Microsoft
|
Math Solver
Resoldre
Pràctica
Jugar
Temes
Preàlgebra
Significar
Moda
Factor comú més gran
Múltiple menys comú
Ordre d'operacions
Fraccions
Fraccions mixtes
Factorització primera:
Exponents
Radicals lliures
Àlgebra
Combina termes semblants
Resoldre per a una variable
Factor
Expandir
Avaluar fraccions
Equacions lineals
Equacions quadràtiques
Desigualtats
Sistemes d'equacions
Matrius
Trigonometria
Simplificar
Avaluar
Gràfics
Resoldre equacions
Càlcul
Derivats
Integrals
Límits
Entrades d'àlgebra
Entrades de trigonometria
Entrades de càlcul
Entrades matricials
Resoldre
Pràctica
Jugar
Temes
Preàlgebra
Significar
Moda
Factor comú més gran
Múltiple menys comú
Ordre d'operacions
Fraccions
Fraccions mixtes
Factorització primera:
Exponents
Radicals lliures
Àlgebra
Combina termes semblants
Resoldre per a una variable
Factor
Expandir
Avaluar fraccions
Equacions lineals
Equacions quadràtiques
Desigualtats
Sistemes d'equacions
Matrius
Trigonometria
Simplificar
Avaluar
Gràfics
Resoldre equacions
Càlcul
Derivats
Integrals
Límits
Entrades d'àlgebra
Entrades de trigonometria
Entrades de càlcul
Entrades matricials
Bàsic
àlgebra
trigonometria
càlcul
estadística
Matrius
Caràcters
Calcula
\text{Divergent}
Prova
Limits
\lim_{ x \rightarrow 0 } \frac{2}{x}
Problemes similars de la cerca web
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Més Elements
Compartir
Copiar
Copiat al porta-retalls
Problemes similars
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Tornar a l'inici