Preskoči na glavni sadržaj
Microsoft
|
Math Solver
Reši
Vježbati
Igrati
Teme
pre-algebra
Značiti
Način
Najveći zajednički faktor
Najmanje zajednički višekratnik
Poredak operacija
Razlomke
Mješovite frakcije
Faktorizacija premijera
Eksponenti
Korijeni
Algebra
Kombinuj kao termine
Rješavanje za varijablu
Faktor
Proširiti
Procjena razlomaka
linearne jednacine
kvadratne jednacine
nejednakosti
Sistemi jednačina
matrice
trigonometrija
Pojednostavi
Procijeni
Grafikoni
Rješavanje jednačina
Kalkulus
Derivati
Integrali
Granice
Unosi algebre
Trigonometrija ulaza
Unosi kalkulusa
Unosi matrice
Reši
Vježbati
Igrati
Teme
pre-algebra
Značiti
Način
Najveći zajednički faktor
Najmanje zajednički višekratnik
Poredak operacija
Razlomke
Mješovite frakcije
Faktorizacija premijera
Eksponenti
Korijeni
Algebra
Kombinuj kao termine
Rješavanje za varijablu
Faktor
Proširiti
Procjena razlomaka
linearne jednacine
kvadratne jednacine
nejednakosti
Sistemi jednačina
matrice
trigonometrija
Pojednostavi
Procijeni
Grafikoni
Rješavanje jednačina
Kalkulus
Derivati
Integrali
Granice
Unosi algebre
Trigonometrija ulaza
Unosi kalkulusa
Unosi matrice
Osnovne
Algebra
trigonometrija
racun
statistika
matrice
Karaktera
Riješite za x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Graf
Nacrtaj grafik obje strane u 2D-u
Grafik u 2D-u
Kviz
Trigonometry
5 problemi slični sa:
\sin ( x ) - cos ( x ) = 0
Slični problemi iz web pretrage
Solve \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} ?
https://socratic.org/questions/58f66b0eb72cff6d065f28c0
\displaystyle{x}=\frac{\pi}{{4}}+{n}\pi Explanation: We have: \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} Which we can rearrange as follows: \displaystyle\therefore{\sin{{x}}}={\cos{{x}}} ...
I confused with trigonometry. \sin x - \cos x = 1
https://math.stackexchange.com/q/2837121
\frac{1}{\sqrt2}\sin{x}-\frac{1}{\sqrt2}\cos{x}=\frac{1}{\sqrt2} or \sin\left(x-45^{\circ}\right)=\sin45^{\circ}, which gives x-45^{\circ}=45^{\circ}+360^{\circ}k, where k is an integer ...
How do you solve \displaystyle{\sin{{2}}}{x}-{\cos{{x}}}={0} ?
https://socratic.org/questions/how-do-you-solve-sin-2x-cos-x-0
Use the important double angle identity \displaystyle{\sin{{2}}}{x}={2}{\sin{{x}}}{\cos{{x}}} to start the solving process. Explanation: \displaystyle{2}{\sin{{x}}}{\cos{{x}}}-{\cos{{x}}}={0} ...
How to solve \sin 3x - \cos x = 0
https://www.quora.com/How-do-I-solve-sin-3x-cos-x-0
\begin{align} &\ \ \sin 3x - \cos x = 0 \\ \Leftrightarrow &\ \ \sin 3x - \sin \left( \dfrac{\pi}{2}-x \right) = 0 \\ \Leftrightarrow &\ \ 2 \cos\dfrac{3x + \left( \frac{\pi}{2}-x \right)}{2} \sin\dfrac{3x - \left( \frac{\pi}{2}-x \right)}{2} = 0 \\ \Leftrightarrow &\ \ 2 \cos \dfrac{2x + \frac{\pi}{2}}{2} \sin \dfrac{4x - \frac{\pi}{2}}{2} = 0 \\ \Leftrightarrow &\ \ \dfrac{2x + \frac{\pi}{2}}{2} = \dfrac{\pi}{2} + k\pi, k \in \mathbb{Z} \text{ or } \dfrac{4x - \frac{\pi}{2}}{2} = k\pi, k \in \mathbb{Z} \\ \Leftrightarrow &\ \ x = \dfrac{\pi}{4} + k\pi, k \in \mathbb{Z} \text{ or } x = \dfrac{\pi}{8} + \dfrac{k\pi}{2}, k \in \mathbb{Z} \end{align}
Find the general solution to \sin(4x)-\cos(x)=0 [closed]
https://math.stackexchange.com/questions/1735307/find-the-general-solution-to-sin4x-cosx-0
\sin(4x)−\cos(x)=0 2\sin(2x)\cos(2x)-\cos(x)=0 4\sin(x)\cos(x)(1-2\sin^2(x))-\cos(x)=0 One possible solution is \cos(x)=0 4\sin(x)(1-2\sin^2(x))=1 8\sin^3(x)-4\sin(x)+1=0 Now, let \sin(x)=m ...
Prove that \sin x - x\cos x = 0 has only one solution in [-\frac{\pi}{2}, \frac{\pi}{2}]
https://math.stackexchange.com/q/1355080/166535
Let f(x)=\sin x-x\cos x. You have f'(x)=x\sin x. Since \sin x has the same sign as x for x\in[-\pi/2,\pi/2], we know that f'(x)\geq0 in this interval and f'(x)>0 for x\in[-\pi/2,\pi/2]\setminus\{0\} ...
Više Stavke
Dijeliti
Kopirati
Kopirano u clipboard
Slični problemi
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Nazad na vrh