Preskoči na glavni sadržaj
Microsoft
|
Math Solver
Reši
Vježbati
Igrati
Teme
pre-algebra
Značiti
Način
Najveći zajednički faktor
Najmanje zajednički višekratnik
Poredak operacija
Razlomke
Mješovite frakcije
Faktorizacija premijera
Eksponenti
Korijeni
Algebra
Kombinuj kao termine
Rješavanje za varijablu
Faktor
Proširiti
Procjena razlomaka
linearne jednacine
kvadratne jednacine
nejednakosti
Sistemi jednačina
matrice
trigonometrija
Pojednostavi
Procijeni
Grafikoni
Rješavanje jednačina
Kalkulus
Derivati
Integrali
Granice
Unosi algebre
Trigonometrija ulaza
Unosi kalkulusa
Unosi matrice
Reši
Vježbati
Igrati
Teme
pre-algebra
Značiti
Način
Najveći zajednički faktor
Najmanje zajednički višekratnik
Poredak operacija
Razlomke
Mješovite frakcije
Faktorizacija premijera
Eksponenti
Korijeni
Algebra
Kombinuj kao termine
Rješavanje za varijablu
Faktor
Proširiti
Procjena razlomaka
linearne jednacine
kvadratne jednacine
nejednakosti
Sistemi jednačina
matrice
trigonometrija
Pojednostavi
Procijeni
Grafikoni
Rješavanje jednačina
Kalkulus
Derivati
Integrali
Granice
Unosi algebre
Trigonometrija ulaza
Unosi kalkulusa
Unosi matrice
Osnovne
Algebra
trigonometrija
racun
statistika
matrice
Karaktera
Procijeni
0
Kviz
Limits
\lim_{ x \rightarrow 0 } 5x
Slični problemi iz web pretrage
Prove that for any c \neq 0 \lim_{x \rightarrow c}{h(x)} does not exist and that \lim_{x \rightarrow 0}{h(x)} does exist.
https://math.stackexchange.com/questions/334631/prove-that-for-any-c-neq-0-lim-x-rightarrow-chx-does-not-exist-and
Hint: take one sequence that contains only rationals and another one that contains only irrationals (both tending to c\ne 0). For the case of c=0, you can use e.g. that h is continuous at 0 ...
Proofs regarding Continuous functions 1
https://math.stackexchange.com/questions/526691/proofs-regarding-continuous-functions-1
The proof of part a) needs to be modified a bit. You have used the logic that if N \leq f(x) \leq M then xN \leq xf(x) \leq xM. This holds only when x \geq 0. It is better to change the argument ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Calculate: \lim_{x \to 0 } = x \cdot \sin(\frac{1}{x})
https://math.stackexchange.com/questions/1066434/calculate-lim-x-to-0-x-cdot-sin-frac1x
Your proof is incorrect, cause you used incorrect transform, but it has already been stated. I'll describe way to solve it. \lim_{x \to 0}\frac{\sin(\frac{1}{x})}{\frac{1}{x}} \neq 1 Hint : ...
Prove that f(x) is bounded. Please check my proof.
https://math.stackexchange.com/q/1052420
Here is another approach: Let L_0 = \lim_{x \downarrow 0} f(x), L_\infty = \lim_{x \to \infty} f(x). By definition of the limit we have some \delta>0 and N>0 such that if x \in (0, \delta), ...
Complex Function limit by investigating sequences
https://math.stackexchange.com/questions/1915934/complex-function-limit-by-investigating-sequences
If a limit as z \to 0 exists, one should be able to plug in any sequence \{ z_n \} going to zero and get the same limit. Limits of sequences are generally easier to work with. So in this case if ...
Više Stavke
Dijeliti
Kopirati
Kopirano u clipboard
Slični problemi
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Nazad na vrh