মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\left(y-7\right)\left(y^{2}+5y+6\right)
যুক্তিসঙ্গত মূল উপপাদ্য অনুসারে, একটি বহুপদের সমস্ত যুক্তিসঙ্গত মূল ফর্ম \frac{p}{q}-এ রয়েছে, যেখানে p ধ্রুবক টার্ম -42-কে ভাগ করে এবং q সামনের গুণাঙ্ক 1-কে ভাগ করে৷ এমন একটি মূল হল 7। y-7 দ্বারা এটি ভাগ করে বহুপদটি গুণনীয়ক করুন।
a+b=5 ab=1\times 6=6
বিবেচনা করুন y^{2}+5y+6। গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি y^{2}+ay+by+6 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,6 2,3
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ধনাত্মক, তাই a এবং b উভয়ই ধনাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 6 প্রদান করে।
1+6=7 2+3=5
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=2 b=3
সমাধানটি হল সেই জোড়া যা 5 যোগফল প্রদান করে।
\left(y^{2}+2y\right)+\left(3y+6\right)
\left(y^{2}+2y\right)+\left(3y+6\right) হিসেবে y^{2}+5y+6 পুনরায় লিখুন৷
y\left(y+2\right)+3\left(y+2\right)
প্রথম গোষ্ঠীতে y এবং দ্বিতীয় গোষ্ঠীতে 3 ফ্যাক্টর আউট।
\left(y+2\right)\left(y+3\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম y+2 ফ্যাক্টর আউট করুন।
\left(y-7\right)\left(y+2\right)\left(y+3\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।